Name $\qquad$ Date $\qquad$ Per $\qquad$

Find the component form of the vector with the given magnitude and direction angle 1. $|\mathbf{v}|=27.3, \theta=214.9^{\circ}$

Find the magnitude and direction angle of the vector. Give the measure of the direction angle as an angle in $\left[0^{\circ}, 360^{\circ}\right)$.
2. $\langle 4,-6\rangle$

Perform the indicated operation. Use the form $\langle\boldsymbol{a}, \boldsymbol{b}\rangle$ for vectors. $\mathbf{u}=\langle-1,5\rangle, \mathbf{v}=\langle 4,-7\rangle$
3. Find $3 \mathbf{u}-\mathbf{v}$
4. Find $\mathbf{u} \cdot \mathbf{v}$

Find the smallest positive angle between the given vectors to the nearest tenth of a degree.
5. $\langle-6,8\rangle$ and $\langle 5,-1\rangle$

Determine whether the vectors are parallel, perpendicular, or neither.
6. $\langle 2,-4\rangle$ and $\langle 6,3\rangle$
7. $\langle 9,1\rangle$ and $\langle 1,9\rangle$
8. $\langle-1,7\rangle$ and $\langle 3,-21\rangle$

Solve the problems.
9. One rope pulls a barge due east with a force of 75 N , and another rope pulls the barge due south with a force of 87 N . Find the magnitude of the resultant force acting on the barge and the angle between the resultant force and the smaller force.
10. Find the force required to keep a $50-\mathrm{lb}$ wagon from sliding down a ramp inclined at $20^{\circ}$ to the horizontal.
11. An airplane flies due east at 375 mph . The wind affecting the plane is blowing from $295^{\circ}$ at 43 mph . What is the true course and ground speed of the airplane? Round to the nearest tenth.

Perform the indicated operation. Write the answer in the form $\boldsymbol{a}+\boldsymbol{b} \boldsymbol{i}$.
12. $4\left(\cos 80^{\circ}+i \sin 80^{\circ}\right) \cdot 3\left(\cos 130^{\circ}+i \sin 130^{\circ}\right)$
13. $\frac{7\left(\cos \frac{5 \pi}{6}+i \sin \frac{5 \pi}{6}\right)}{2\left(\cos \frac{\pi}{3}+i \sin \frac{\pi}{3}\right)}$

Use De Moivre's Theorem to simplify the expression. Write the answer in $\boldsymbol{a}+\boldsymbol{b} \boldsymbol{i}$ form.
14. $(-4+4 i \sqrt{3})^{4}$
15. $(2-2 i)^{5}$

Find the indicated roots. Write the answers in trigonometric form.
16. Fourth roots of $81\left(\cos 280^{\circ}+i \sin 280^{\circ}\right)$

Solve the equation. Write the answer in $a+b i$ form. Give exact answers (no calculator).
17. $x^{3}+64=0$
18. $x^{2}+18 i=0$

Convert the rectangular coordinates to polar coordinates, using radian measure for the angle.
19. $(-5,-5)$
20. $(-4,0)$

Plot the point whose polar coordinates are given.
21. $\left(2,-\frac{2 \pi}{3}\right)$
22. $\left(4, \frac{5 \pi}{6}\right)$
23. $\left(-3,210^{\circ}\right)$

## Convert to rectangular coordinates.

24. $\left(-2, \frac{3 \pi}{4}\right)$
25. $\left(3,-\frac{1}{2} \pi\right)$
26. $\left(-4, \frac{4 \pi}{3}\right)$

## Graph the polar equation.

27. $r=3-3 \cos \theta$
28. $r=4 \sin (3 \theta)$

For the given polar equation, write an equivalent rectangular equation.
29. $r=5 \cos \theta$

For the given rectangular equation, write an equivalent polar equation.
30. $x=5$

Eliminate the parameter of the pair of parametric equations.
31. $x=t+5, y=t^{2}+3$
32. $x=4 \cos \theta, y=\sin \theta$

Write a pair of parametric equations that will produce the indicated graph.
33. The line segment starting at $(1,-2)$ with $t=0$ and ending at $(13,1)$ with $t=3$.

