

Probability: A value that represents the likelihood of an event. It can be expressed as a fraction, decimal, or a percentage. A probability of 0 means that the event is impossible and a probability of 1 (or 100%) means that the event is certain to occur.

$$probability = \frac{total \# of favorable outcomes in the category of interest}{total \# of possible outcomes}$$

Remember, $(A \cap B)$ means "A and B" and $(A \cup B)$ means "A or B (or both)". With "or" probabilities, makes sure you don't count the individuals who fall in both categories twice!

$$P(A \cup B) = P(A) + P(B) - P(A \cap B)$$

$$= \begin{bmatrix} A & B \\ A & B \end{bmatrix} + \begin{bmatrix} A & B \\ A & B \end{bmatrix} - \begin{bmatrix} A & B \\ A & B \end{bmatrix}$$

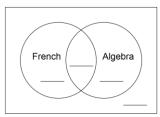
Example: In the Math Club, there are 34 students. Eleven of the students are seniors, including 7 of the 20 girls. A student is chosen at random from the club. Fill in the table and find the following probabilities:

- a) P(boy)
- b) P(senior)
- c) $P(\text{boy} \cap \text{senior})$
- d) $P(girl \cup non-senior)$

	Seniors	Non-Seniors	Total
Boys			
Girls			
Total			

Example: The number of students in a high school is 1400. Of those students, 550 take French, 700 take algebra, and 400 take both French and algebra. Fill in the Venn diagram, then find the following probabilities.

- a) P(does not take French)
- b) $P(algebra \cap French)$
- c) P(algebra, but not French)
- d) $P(algebra \cup French)$



Conditional Probability: The probability of an event occurring when we already know that another event has occurred.

Example: P(lung cancer|smoke) would mean the probability of a person getting lung cancer given that the person smokes.

Conditional Probability Formula:
$$P(A|B) = \frac{P(A \cap B)}{P(B)}$$
 or $\frac{\text{total } \# \text{ in } A \cap B}{\text{total } \# \text{ in } B}$

★ "And" and "or" probabilities are fractions of the entire sample, but with conditional probabilities, the condition becomes the denominator of the fraction!

Examples:

An ice cream shop keeps track of whether people order vanilla or chocolate ice cream and whether they order a sugar cone or a waffle cone. Fill in the marginal totals and find the requested probabilities.

	Sugar Cone	Waffle Cone	Total
Vanilla	35	26	
Chocolate	51	47	
Total			

a)
$$P(\text{vanilla})$$

b)
$$P(\text{waffle})$$

c)
$$P(sugar)$$

d)
$$P(\text{chocolate})$$

e)
$$P(\text{vanilla} \cap \text{sugar})$$

e)
$$P(\text{vanilla} \cap \text{sugar})$$
 f) $P(\text{vanilla} \cap \text{waffle})$

g)
$$P(\text{chocolate} \cap \text{sugar})$$

h)
$$P(\text{chocolate} \cap \text{waffle})$$

i)
$$P(\text{vanilla} \cup \text{sugar})$$
 j) $P(\text{vanilla} \cup \text{waffle})$

j)
$$P(\text{vanilla} \cup \text{waffle})$$

k)
$$P(\text{chocolate} \cup \text{sugar})$$

l)
$$P(\text{chocolate} \cup \text{waffle})$$

m)
$$P(\text{vanilla}|\text{sugar})$$

n)
$$P(\text{vanilla}|\text{waffle})$$

n)
$$P(\text{vanilla}|\text{waffle})$$
 o) $P(\text{chocolate}|\text{sugar})$

p)
$$P(\text{chocolate}|\text{waffle})$$

q)
$$P(\text{sugar}|\text{vanilla})$$

r)
$$P(\text{sugar}|\text{chocolate})$$

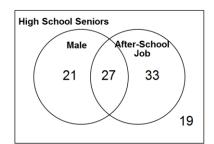
q)
$$P(\text{sugar}|\text{vanilla})$$
 r) $P(\text{sugar}|\text{chocolate})$ s) $P(\text{waffle}|\text{vanilla})$ t) $P(\text{waffle}|\text{chocolate})$

t)
$$P(\text{waffle}|\text{chocolate})$$

Use the Venn diagram to find the following probabilities.

a) P(job|male)

b) P(female|job)



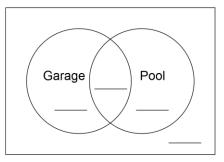
c) P(male|no job)

- d) P(no job|female)
- e) A student from the sample works at McTaco. What is the probability that the student is male?
- f) Is a student from the sample more likely to have a job if he is a male? Justify your answer using conditional probability.

Real-estate ads suggest that 64% of homes have a garage, 21% have a pool, and 17% have both a garage and a pool. Fill in the Venn diagram, then answer the following questions.

a) Find $P(\text{garage} \cup \text{pool})$

b) Find P(garage|pool)



c) Find P(pool|garage)

d) Find P(pool|no garage)

e) Find P(no pool|garage)

f) Find P(no garage|no pool)