

Date:

Section: 7.3

Objective: Find the zeros of quadratic functions and the *x*-intercepts of their graphs

Zeros of a Function: The values of x that make f(x) or y equal zero. If the zeros are real, they tell you the places where the graph crosses the *x*-axis, or the *x*-intercepts of the graph.

Other words for zeros: solutions to f(x) = 0, roots, x-intercepts.

Finding zeros and *x*-intercepts:

- 1. Change y or f(x) to 0.
- 2. Solve for *x*.
 - If the equation is **in factored form**, solving for *x* is easy just think "What would *x* have to be to make each set of parentheses equal to 0?"
 - If the equation is **in standard form**, solve by factoring or by using quadratic formula
 - If the equation is **in vertex form**, get the perfect square by itself, take the square root of both sides (don't forget the \pm), then solve for *x*.
- ★ If your answers are imaginary (negative under the square root), the graph doesn't have *x*-intercepts.

For each function, do the following: 1) state whether the function is in **standard**, **vertex**, or **factored** form, 2) state whether the parabola opens **up** or **down**, 3) find the **zeros** (x-values), 4) state the x-intercepts as ordered pairs.

A. $f(x) = (x+7)(x-1)$	$B. \ y = -4x^2 + 2x$
1) Form:	1) Form:
2) Direction of opening:	2) Direction of opening:
3) Zeros:	3) Zeros:
4) <i>x</i> -intercepts:	4) <i>x</i> -intercepts:
Show work here:	Show work here:

C. $y = -3(x+5)^2 + 27$

1) Form: _____

2) Direction of opening: _____

3) Zeros: _____

4) *x*-intercepts: _____

Show work here:

D. $f(x) = 5x^2 - 20$

1) Form: _____

2) Direction of opening: _____

3) Zeros: _____

4) *x*-intercepts: _____

Show work here:

E. $y = x^2 - 16x + 48$

- 1) Form: _____
- 2) Direction of opening: _____
- 3) Zeros: _____
- 4) *x*-intercepts:

Show work here:

F. $f(x) = 2(x-2)^2 + 8$

1) Form: _____

2) Direction of opening: _____

3) Zeros: _____

4) *x*-intercepts: _____

Show work here:

G. $f(x) = -(x+3)^2 + 50$

1) Form: _____

- 2) Direction of opening: _____
- 3) Zeros: _____
- 4) *x*-intercepts:

Show work here:

- H. $y = -2x^2 + 4x 10$
- 1) Form: _____
- 2) Direction of opening:

3) Zeros: _____

4) *x*-intercepts: _____

Show work here: