Date:
Objective: Find the zeros of quadratic functions and the x-intercepts of their graphs

Zeros of a Function: The values of \boldsymbol{x} that make $\boldsymbol{f}(\boldsymbol{x})$ or y equal zero. If the zeros are real, they tell you the places where the graph crosses the \boldsymbol{x}-axis, or the \boldsymbol{x}-intercepts of the graph.

Other words for zeros: solutions to $f(x)=0$, roots, \boldsymbol{x}-intercepts.

Finding zeros and x-intercepts:

1. Change y or $f(x)$ to 0 .
2. Solve for x.

- If the equation is in factored form, solving for x is easy - just think "What would x have to be to make each set of parentheses equal to 0 ?"
- If the equation is in standard form, solve by factoring or by using quadratic formula
- If the equation is in vertex form, get the perfect square by itself, take the square root of both sides (don't forget the \pm), then solve for x.
* If your answers are imaginary (negative under the square root), the graph doesn't have x-intercepts.

For each function, do the following: 1) state whether the function is in standard, vertex, or factored form, 2) state whether the parabola opens up or down, 3) find the zeros (x-values), 4) state the \boldsymbol{x} intercepts as ordered pairs.
A. $f(x)=(x+7)(x-1)$
B. $y=-4 x^{2}+2 x$

1) Form: \qquad
2) Direction of opening: \qquad
3) Zeros: \qquad
4) Form: \qquad
5) Direction of opening: \qquad
6) Zeros: \qquad
7) x-intercepts: \qquad 4) x-intercepts: \qquad
Show work here:
Show work here:
C. $y=-3(x+5)^{2}+27$
8) Form: \qquad
9) Direction of opening: \qquad
10) Zeros: \qquad
11) x-intercepts: \qquad
Show work here:
D. $f(x)=5 x^{2}-20$
12) Form: \qquad
13) Direction of opening: \qquad
14) Zeros: \qquad
15) x-intercepts: \qquad
Show work here:
E. $y=x^{2}-16 x+48$
16) Form: \qquad
17) Direction of opening: \qquad
18) Zeros: \qquad
19) x-intercepts: \qquad
Show work here:
F. $f(x)=2(x-2)^{2}+8$
20) Form: \qquad
21) Direction of opening: \qquad
22) Zeros: \qquad
23) x-intercepts: \qquad
Show work here:
H. $y=-2 x^{2}+4 x-10$
24) Form: \qquad
25) Direction of opening: \qquad
26) Zeros: \qquad
27) x-intercepts: \qquad
Show work here:
