

Date:
Section: 7.2
Objective: Graph quadratic formulas using the vertex and value of $a$.
The graph of $y=x^{2}$ :

## Vertex:

Axis of Symmetry:
Direction of Opening:
$y$-intercept:
Pattern:


| $\boldsymbol{x}$ | $\boldsymbol{y}$ |
| ---: | :--- |
| -3 | 9 |
| -2 | 4 |
| -1 | 1 |
| 0 | 0 |
| 1 | 1 |
| 2 | 4 |
| 3 | 9 |

1. Find the vertex of the parabola.
2. Then use the pattern of the parent graph to find 4 more points, 2 on each side of the vertex. If $a$ isn't 1 , the pattern is a little different (see next page).

Examples: Fill in the requested information for each function. Then draw the graph.
a) $f(x)=x^{2}+4 x+3 \quad$ Form of the equation: $\qquad$ $a=$ $\qquad$ $b=$ $\qquad$

Vertex:

Axis of Symmetry:
Direction of Opening:
Is the vertex a maximum or minimum?


Maximum or minimum value:
$y$-intercept:

Domain:


Range:

## Vertical Stretch:

- $a$ changes how wide the graph is.
- If $|a|>1$, the graph is thinner than the graph of $y=x^{2}$.
- If $|a|<1$, the graph is wider than the graph of $y=x^{2}$.


## How $a$ changes the pattern:

The normal pattern is find the vertex, then move over 1 up 1. To find the next two points go back to the vertex and move over 2 up 4.
When $a$ is not 1 you multiply the y-value(the "up" number) by " $a$ " to get the up value.
Example: y $=3 x^{2}$ Instead of over 1 up 1 it would be over 1 up 3 (one times 3) and instead of over 2 up 4 it would be over 2 up 12 (four times 3)
b) f(x) $f=\frac{1}{2}(x-1)^{2}-4 \quad$ Form of the equation: $\qquad$

$$
a=
$$

$h=$ $\qquad$ $k=$ $\qquad$

Vertex:

Axis of Symmetry:
Direction of Opening:
Is the vertex a maximum or minimum?
Maximum or minimum value:

$y$-intercept:

Domain:

| $\boldsymbol{x}$ | $\boldsymbol{y}$ |
| :---: | :---: |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |

Range:
c) $f(x)=-3 x^{2}-6 x+2 \quad$ Form of the equation: $\qquad$

$$
a=
$$ $b=$ $\qquad$

Vertex:

Axis of Symmetry:
Direction of Opening:
Is the vertex a maximum or minimum?


Maximum or minimum value:
$y$-intercept:

Domain:


Range:
d) $f(x)=-(x+2)^{2}-1 \quad$ Form of the equation: $\qquad$ $k=$ $\qquad$

Vertex:

Axis of Symmetry:
Direction of Opening:
Is the vertex a maximum or minimum?


Maximum or minimum value:
$y$-intercept:

Domain:


Range:
e) f(x) $=2(x-4)^{2}-3 \quad$ Form of the equation: $\qquad$

$$
a=
$$ $h=$ $\qquad$ $k=$ $\qquad$

## Vertex:

Axis of Symmetry:
Direction of Opening:
Is the vertex a maximum or minimum?


Maximum or minimum value:
$y$-intercept:

Domain:


Range:
f) $f(x)=-\frac{1}{2} x^{2}-x+2$

Form of the equation: $\qquad$ $a=$ $\qquad$ $b=$

Vertex:

Axis of Symmetry:
Direction of Opening:
Is the vertex a maximum or minimum?


Maximum or minimum value:
$y$-intercept:

Domain:

| $x$ | $y$ |
| :---: | :---: |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |

Range:

