7.2 Graphing Quadratic Functions: Vertex and Axis of Symmetry State the vertex and graph each parabola. Clearly mark the vertex and four other points on the graph. 1. $y = x^2 + 2x - 1$ Vertex: ____ Form of the equation: $a = \underline{\qquad} b = \underline{\qquad}$ Vertex Vertex 3. $f(x) = -x^2 - 4x$ Vertex: _____ Form of the equation: $a = \underline{\qquad} b = \underline{\qquad}$ Vertex 2. $y = -(x - 2)^2 + 4$ Vertex: _____ Form of the equation: _____ a =_____, h =_____ k =_____ Vertex y 4. $y = 3(x-1)^2 - 8$ Vertex: Form of the equation: a =_____, $\hat{h} =$ _____ k =_____ Vertex y 5. $f(x) = x^2 - 8x + 15$ Vertex: Form of the equation: a =_____ b =_____ | | \boldsymbol{x} | y | |--------|------------------|---| | | | | | | | | | Vertex | | | | | | | | | | | 6. $y = \frac{1}{2}(x+3)^2 - 5$ Vertex:____ Form of the equation: $\underline{}$ $a = \underline{}$ $b = \underline{}$ $k = \underline{}$ | | x | y | |--------|---|---| | | | | | | | | | Vertex | | | | | | | | | | | ## Fill in the requested information for each function. Draw the graph. You need AT LEAST 5 POINTS! 7. $$y = (x+3)^2 + 1_y$$ Vertex: Axis of Symmetry: Direction of Opening: Is the vertex a maximum or a minimum? _____ Maximum or minimum value: _____ y-intercept: _____ Domain: _____ Range: _____ 8. $y = 2x^2 - 5$ Vertex: _____ Axis of Symmetry: _____ Direction of Opening: Is the vertex a maximum or a minimum? Maximum or minimum value: y-intercept: Domain: _____ Range: _____ 9. $y = -\frac{1}{2}(x+2)^2_y$ Vertex: _____ Axis of Symmetry: Direction of Opening: Is the vertex a maximum or a minimum? _____ Maximum or minimum value: y-intercept: _____ Domain: Range: 10. $f(x) = -x^2 + 6x - 7$ Vertex: Axis of Symmetry: Direction of Opening: Is the vertex a maximum or a minimum? Maximum or minimum value: _____ y-intercept: Domain: _____ Range: _____