

7.1 Graphing Quadratic Functions: Vertex and Axis of Symmetry

Write the form each quadratic equation is in. Find the vertex and the direction of the opening of the graph for each of the following quadratic equations. Find the *y*-intercept and axis of symmetry.

1.
$$y = (x-4)^2 + 3$$

2.
$$y = -2(x+3)^2$$

 $a = \underline{\hspace{1cm}}, h = \underline{\hspace{1cm}}, k = \underline{\hspace{1cm}}$

3.
$$y = x^2 - 2x - 11$$

 $a = \underline{\hspace{1cm}}, b = \underline{\hspace{1cm}}, c = \underline{\hspace{1cm}}$

4.
$$f(x) = -2x^2 + 8x - 58$$

 $a = \underline{\hspace{1cm}}, b = \underline{\hspace{1cm}}, c = \underline{\hspace{1cm}}$

5.
$$y = (x - 3)(x - 7)$$

Form: _____

Vertex:_____

Axis of Symmetry: _____

Direction of opening:

y-intercept:

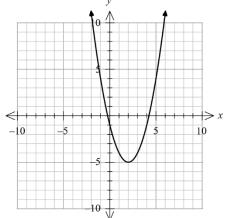
6.
$$f(x) = \frac{1}{4}(x+2)(x-6)$$

a = _____, *p* = _____, *q* = _____

Form: _____

Vertex:

Axis of Symmetry: _____

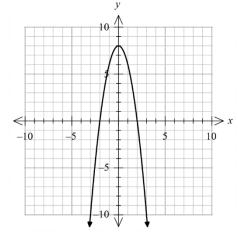

Direction of opening:_____

y-intercept: _____

6a. What do the vertex and axis of symmetry always have in common?

For each of the following graphs, find the vertex, axis of symmetry, and y-intercept.

7.

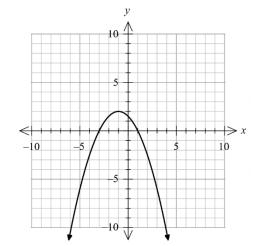

Vertex:

Axis of Symmetry: _____

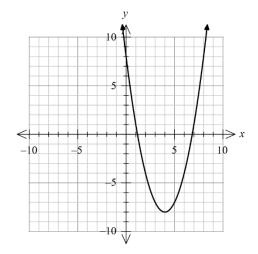
y-intercept: _____

is the value of "a" positive or negative?

8.


Vertex:

Axis of Symmetry: _____


y-intercept: _____

is the value of "a" positive or negative?

9.

10.

Vertex: _____

Axis of Symmetry: _____

y-intercept: _____

is the value of "a" positive or negative? _____

Vertex:

Axis of Symmetry: _____

y-intercept: _____

is the value of "a" positive or negative? ____

Solve.

11.
$$(x+3)(2x-5)=0$$

12.
$$-3(x-7)^2 + 45 = 0$$
 13. $4x^2 - 11 = 3x$

13.
$$4x^2 - 11 = 3x$$