

Date:

Section: 7.1

Objective: Recognize different forms of quadratic functions, find the vertex, axis of symmetry, and y-intercept of quadratic graphs.

What does quadratic mean?

Forms of Quadratic Functions:

Form: $f(x)=a x^{2}+b x+c$, where $a \neq 0$. There are no parentheses.

Example:
\qquad Form: $f(x)=a(x-p)(x-q)$, where $a \neq 0$. Written as a multiplication problem.

Example:
Form: $f(x)=a(x-h)^{2}+k$, where $a \neq 0 . x$ is only in the function once, and is part of a perfect square.

> Example:

Examples: State whether each quadratic function is in standard, factored, or vertex form. Identify the values of a, b, and c for standard form; a, p, and q for factored form; or a, h, and k for vertex form.
a) $f(x)=2(x+3)(x-5)$
b) $f(x)=-(x+4)^{2}-5$
c) $f(x)=x^{2}+2 x+4$
d) $f(x)=-x^{2}+5 x$
e) $f(x)=3 x(x-2)$
f) $f(x)=2(x+1)^{2}-3$
g) $f(x)=-(x+5)^{2}$
h) $f(x)=-3 x^{2}+4$
i) $f(x)=5 x^{2}$
\qquad : The shape of the graph of a quadratic function.
\qquad : A line that \qquad a parabola in \qquad . If you were to fold a parabola along its axis of symmetry, the two sides would \qquad . The equation of the axis of symmetry looks like \qquad .
\qquad : The "tip" of the \qquad or the point at which it \qquad
\qquad _.
\qquad : The point where the graph crosses the \qquad . It should be written as an \qquad : \qquad .

Finding the vertex in each form.

1) Vertex Form of a Quadratic Function:

- To find the vertex:
- The sign of h is
- The sign of k is

2) Standard Form:

- To find the vertex:
- The x-coordinate of the vertex is
- To find the y-coordinate,

3) Factored Form:

- To find the vertex:
- The x-coordinate of the vertex is
- To find the y-coordinate,

Finding the axis of symmetry, direction of opening, and \boldsymbol{y}-intercept is the same in all forms.
Axis of Symmetry:

Direction of Opening:

- Opens up if a is \qquad .
- Opens down if a is \qquad .

Finding the y-intercept:
1.
2.
\star Don't forget:

Write the form each quadratic equation is in. Find the vertex and the direction of the opening of the graph for each of the following quadratic equations. Find the y-intercept and axis of symmetry.
a) $y=(x-7)^{2}+9$
$h=$ \qquad , $k=$ \qquad
Form: \qquad
Vertex: \qquad
Axis of Symmetry: \qquad
Direction of opening: \qquad
y-intercept: \qquad
b) $y=3 x^{2}-12 x-10$
$a=$ \qquad , $b=$ \qquad
Form: \qquad
Vertex: \qquad
Axis of Symmetry: \qquad
Direction of opening: \qquad
y-intercept: \qquad
c) $y=-(x+4)(x-6)$
$p=$ \qquad , $q=$ \qquad
Form: \qquad
Vertex: \qquad
Axis of Symmetry: \qquad
Direction of opening: \qquad
y-intercept: \qquad
d) $y=-x^{2}+4 x-10$
\qquad
$a=$, $b=$
e) $y=-3(x+2)^{2}-1$
$h=$ \qquad , $k=$ \qquad
f) $y=\frac{1}{2}(x-3)(x-7)$
$p=$ \qquad , $q=$ \qquad
g) $y=-5 x^{2}-10 x+12$
$a=$ \qquad , $b=$ \qquad
h) $y=\frac{2}{3} x^{2}-4$
$a=$
, $b=$
$h=$
, $k=$

Form: \qquad
Vertex: \qquad
Axis of Symmetry: \qquad
Direction of opening: \qquad
y-intercept: \qquad

Form: \qquad
Vertex: \qquad
Axis of Symmetry: \qquad
Direction of opening: \qquad y-intercept: \qquad

Form: \qquad
Vertex: \qquad
Axis of Symmetry: \qquad
Direction of opening: \qquad
y-intercept: \qquad

Form: \qquad
Vertex: \qquad
Axis of Symmetry: \qquad
Direction of opening: \qquad
y-intercept: \qquad

Form: \qquad
Vertex: \qquad
Axis of Symmetry: \qquad
Direction of opening: \qquad
y-intercept: \qquad

For each of the following graphs, find the vertex, axis of symmetry, and y-intercept.

Graph 1:

Vertex: \qquad
Axis of Symmetry: \qquad
y-intercept: \qquad
Is the value of " a " positive or negative? \qquad
Graph 2:

Vertex: \qquad
Axis of Symmetry: \qquad
y-intercept: \qquad
Is the value of " a " positive or negative? \qquad

Graph 3:

Vertex: \qquad
Axis of Symmetry: \qquad
y-intercept: \qquad
Is the value of " a " positive or negative? \qquad

