

Date:

Section: 7.1

Objective: Recognize different forms of quadratic functions, find the vertex, axis of symmetry, and *y*-intercept of quadratic graphs.

What does quadratic mean?

Forms of Quadratic Functions:

Form: $f(x) = ax^2 + bx + c$, where $a \neq 0$. There are no parentheses.

Example:

Form: f(x) = a(x-p)(x-q), where $a \neq 0$. Written as a multiplication problem.

Example:

Form: $f(x) = a(x-h)^2 + k$, where $a \neq 0$. x is only in the function once, and is part of a perfect square.

Example:

Examples: State whether each quadratic function is in standard, factored, or vertex form. Identify the values of *a*, *b*, and *c* for standard form; *a*, *p*, and *q* for factored form; or *a*, *h*, and *k* for vertex form.

a)
$$f(x) = 2(x+3)(x-5)$$

b) $f(x) = -(x+4)^2 - 5$
c) $f(x) = x^2 + 2x + 4$

d)
$$f(x) = -x^2 + 5x$$
 e) $f(x) = 3x(x-2)$ f) $f(x) = 2(x+1)^2 - 3$

g)
$$f(x) = -(x+5)^2$$

h) $f(x) = -3x^2 + 4$
i) $f(x) = 5x^2$

: The shape of the graph of a quadratic function.

: A line that	a parabola in	If you were to fold a
parabola along its axis of symmetry, the two sides	would	The equation of the axis of
symmetry looks like		
: The "tip" of the	or the point at w	which it

	: The point where the graph crosses the	It should be
written as an	;	

Finding the vertex in each form.

1) Vertex Form of a Quadratic Function:

_.

- To find the vertex:
 - The sign of h is
 - The sign of k is

2) Standard Form:

- To find the vertex:
 - The *x*-coordinate of the vertex is
 - To find the *y*-coordinate,

3) Factored Form:

- To find the vertex:
 - The *x*-coordinate of the vertex is
 - To find the *y*-coordinate,

Finding the axis of symmetry, direction of opening, and *y*-intercept is the same in all forms.

Axis of Symmetry:

Direction of Opening:

- Opens up if a is _____.
- Opens down if *a* is _____.

Finding the *y*-intercept:

1.

- 2.
- ★ Don't forget:

Write the form each quadratic equation is in. Find the vertex and the direction of the opening of the graph for each of the following quadratic equations. Find the *y*-intercept and axis of symmetry.

a) $y = (x - 7)^2 + 9$	Form:
$h = ___, k = ___$	Vertex:
	Axis of Symmetry:
	Direction of opening:
	y-intercept:
b) $y = 3x^2 - 12x - 10$	Form:
<i>a</i> =, <i>b</i> =	Vertex:
	Axis of Symmetry:
	Direction of opening:
	y-intercept:
c) $y = -(x+4)(x-6)$	Form:
<i>p</i> =, <i>q</i> =	Vertex:
	Axis of Symmetry:
	Direction of opening:
	y-intercept:

d)
$$y = -x^2 + 4x - 10$$

 $a = ___, b = ___$

e)
$$y = -3(x+2)^2 - 1$$

 $h = _, k = _$

f)
$$y = \frac{1}{2}(x-3)(x-7)$$

 $p = _, q = _$

g)
$$y = -5x^2 - 10x + 12$$

 $a = ___, b = ___$

h)
$$y = \frac{2}{3}x^2 - 4$$

 $a = _, b = _$
 $h = _, k = _$

Form:
Vertex:
Axis of Symmetry:
Direction of opening:
y-intercept:

Form:
Vertex:
Axis of Symmetry:
Direction of opening:
y-intercept:

Form:	
Vertex:	
Axis of Symmetry:	
Direction of opening:	
y-intercept:	

Form:	
Vertex:	
Axis of Symmetry:	
Direction of opening:	
y-intercept:	

Form:	
Vertex:	
Axis of Symmetry:	
Direction of opening:	
y-intercept:	

For each of the following graphs, find the vertex, axis of symmetry, and y-intercept.

Graph 1:	Graph 2:
-6 -3 -3333	-6 -3 3 6 -6 -6 -
Vertex:	Vertex:
Axis of Symmetry:	Axis of Symmetry:
y-intercept:	y-intercept:
Is the value of "a" positive or negative?	Is the value of " <i>a</i> " positive or negative?

Graph 3:

Vertex:	
Axis of Symmetry:	
y-intercept:	
Is the value of " <i>a</i> " positive or negative?	_