We've learned how to solve quadratic equations by factoring, but what do we do if we have an equation with something that can't be factored, like $x^{2}+5 x+2=0$?

The Quadratic Formula: A quadratic equation written in the form $a x^{2}+b x+c=0$, where $a \neq 0$, has the solutions

$$
x=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a} .
$$

Solving a Quadratic Equation Using the Quadratic Formula:

1. Write the equation in standard form: $a x^{2}+b x+c=0$.
2. Identify a, b, and c. Plug them into the equation. Be careful with parentheses.
3. Simplify. Be careful to follow order of operations and deal with negatives correctly.

Examples: Solve each equation using the quadratic formula.
a) $x^{2}+4 x+7=0$
b) $3 m^{2}+16 m+5=0$
$\mathbf{a}=$ \qquad , $b=$ \qquad
$\mathbf{a}=$ \qquad , $b=$ \qquad $x=\frac{-\ldots \pm \sqrt{(\ldots)^{2}-4(\ldots)\left(_\right)}}{2(\ldots)}$

$$
x=\frac{-\ldots \pm \sqrt{(\ldots)^{2}-4(\ldots)\left(_\right)}}{2\left(_\right)}
$$

c) $2 w^{2}-4 w=3$
$\mathbf{a}=$ \qquad , $\mathbf{b}=$ \qquad
$x=\frac{-\ldots \pm \sqrt{(\ldots)^{2}-4(\ldots)\left(_\right)}}{2\left(_\right)}$
d) $-n^{2}+4 n-4=0$
\qquad
$x=\frac{-\ldots \pm \sqrt{(\ldots)^{2}-4(\ldots)\left(_\right)}}{2(\ldots)}$
e) $r^{2}+9=0$

$$
\begin{aligned}
& \mathbf{a}=\ldots, \quad \mathbf{b}=\ldots, \mathbf{c}=\ldots \sqrt{(\ldots)^{2}-4(\ldots)(\ldots)} \\
& x=\frac{-\ldots)}{2(\ldots}
\end{aligned}
$$

f) $6 u^{2}-2 u=0$

$$
\begin{aligned}
& \mathbf{a}=\ldots, \quad \mathbf{b}=\ldots, \mathbf{c}=\ldots \\
& x=\frac{-\ldots \pm \sqrt{(\ldots)^{2}-4(\ldots)(\ldots)}}{2(\ldots)}
\end{aligned}
$$

h) $\frac{1}{4} y^{2}-y+\frac{1}{2}=0$

$$
\begin{aligned}
& \mathbf{a}=\ldots, \quad \mathbf{b}=\ldots, \mathbf{c}=\ldots \\
& x=\frac{-\ldots \pm \sqrt{(\ldots)^{2}-4(\ldots)(\ldots)}}{2(\ldots)}
\end{aligned}
$$

