

Date:

## Section:

Objective:

## Symmetry

$y$-axis or $\qquad$ symmetry:

- The left and right sides are mirror images around the $\qquad$ -axis.
- The left and right sides would overlap if you fold the graph along the
$\qquad$ -axis.


Origin or $\qquad$ symmetry

- When you rotate the graph around $180^{\circ}$, you end up with the same graph you started with.
- If you fold the graph along the $x$-axis and then again along the $y$-axis, the two halves would overlap.


Examples: Determine what type of symmetry each function has (even, odd, or neither).
a)

b)

c)


## End Behavior

End behavior describes what is happening to the $\boldsymbol{y}$-coordinates of the graph as you move left $(x \rightarrow-\infty)$ or as you move right $(x \rightarrow \infty)$.

- Left end behavior looks like this: $\lim _{x \rightarrow-\infty} f(x)=$ $\qquad$ -
- Right end behavior looks like this: $\lim _{x \rightarrow \infty} f(x)=$ $\qquad$ .
- Arrow pointing up: Write $\infty$
- Arrow pointing down: Write $-\infty$
- Endpoint (no arrow): Write D.N.E. (does not exist)
- Asymptote or flat end with arrow: Write $y$-coordinate of asymptote or flat part

Examples: Describe the end behavior of each graph using limits.
a)


Left: $\lim _{x \rightarrow-\infty} f(x)=$ $\qquad$
Right: $\lim _{x \rightarrow \infty} f(x)=$ $\qquad$
d)


Left: $\lim _{x \rightarrow-\infty} f(x)=$ $\qquad$
Right: $\lim _{x \rightarrow \infty} f(x)=$ $\qquad$
b)


Left: $\lim _{x \rightarrow-\infty} f(x)=$ $\qquad$
Right: $\lim _{x \rightarrow \infty} f(x)=$ $\qquad$
e)


Left: $\lim _{x \rightarrow-\infty} f(x)=$ $\qquad$
Right: $\lim _{x \rightarrow \infty} f(x)=$ $\qquad$
c)


Left: $\lim _{x \rightarrow-\infty} f(x)=$ $\qquad$
Right: $\lim _{x \rightarrow \infty} f(x)=$ $\qquad$
f)


Left: $\lim _{x \rightarrow-\infty} f(x)=$ $\qquad$
Right: $\lim _{x \rightarrow \infty} f(x)=$ $\qquad$

