2.3 Analyzing Function Graphs: Intercepts, Positive/Negative

Find the intercepts using algebra. Show all your work. Write your answers as ordered pairs.

1.
$$f(x) = 3x - 6$$

2.
$$f(x) = -x + 3$$

3.
$$f(x) = -2x - 9$$

x-intercept _____

x-intercept _____

x-intercept _____

y-intercept _____

y-intercept _____

y-intercept _____

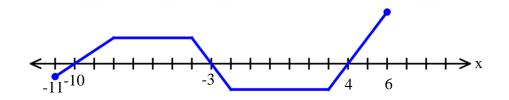
4.
$$y = \frac{2}{3}x + 8$$

5.
$$-3x + 7y = 6$$

6.
$$-2x + 5y = -15$$

x-intercept _____

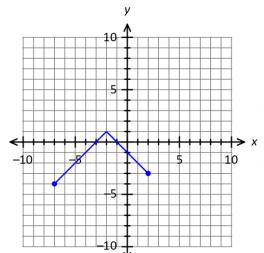
x-intercept _____


x-intercept _____

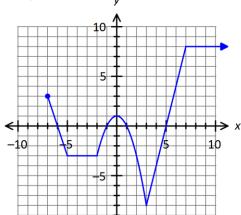
y-intercept _____

y-intercept _____

y-intercept _____

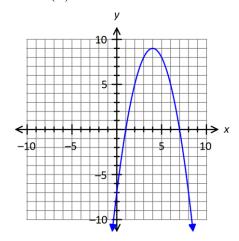

Color the positive and negative section(s) of the graph each a different color.

- 7. The positive section(s) are _____ color.
- 8. Write the positive interval(s):_____
- 9. The negative section(s) are _____ color.
- 10. Write the negative interval(s):_____

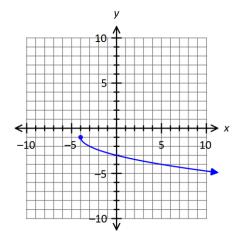

Color the positive and negative section(s) of the graph each a different color. Write the intervals in interval notation where the graph is positive and negative.

11.

- a. The positive section(s) are _____ color.
- b. Write the positive interval(s):_____
- c. The negative section(s) are _____ color.
- d. Write the negative interval(s):_____

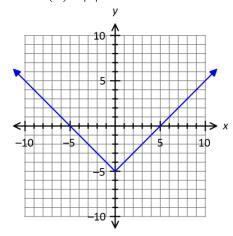

12.

- a. The positive section(s) are _____ color.
- b. Write the positive interval(s):_____
- c. The negative section(s) are _____ color.
- d. Write the negative interval(s):_____

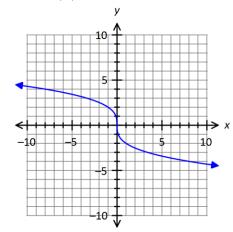

Write the intercepts as ordered pairs. Write the intervals in interval notation where the graph is positive and negative.

13.
$$f(x) = -x^2 + 8x - 7$$

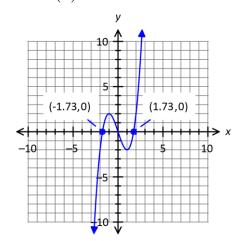
Positive: _____ Negative: _____


14.
$$f(x) = -\sqrt{x+4} - 1$$

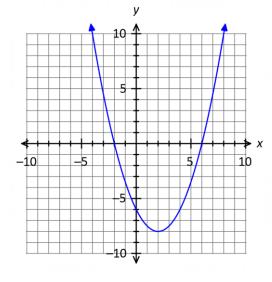
x-intercept(s):______ y-intercept:_____


Positive: _____ Negative: _____

15.
$$g(x) = |x| - 5$$



Positive: _____ Negative: _____


16.
$$g(x) = -2\sqrt[3]{x}$$

17.
$$h(x) = x^3 - 3x$$

18.
$$f(x) = \frac{1}{2}(x-2)^2 - 8$$

Domain:______ Range:_____

Positive:______ Negative:_____

Relative Maximum Point:______ Value:_____

Relative Minimum Point:______ Value:_____

Increasing: Decreasing: ____

Constant:_____