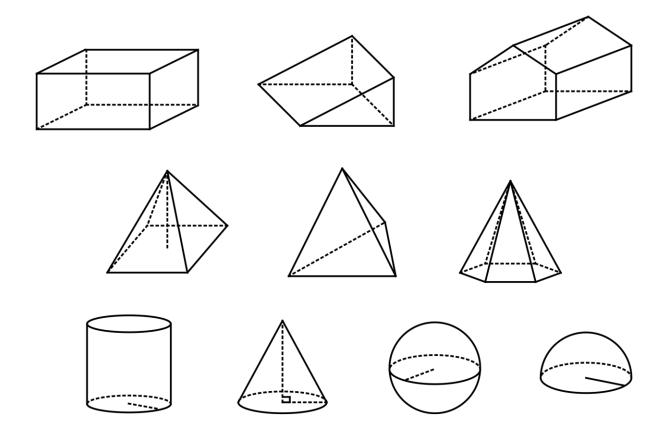


Section: 12.5

Prism: A solid with two congruent, parallel polygons called **bases**.

Pyramid: A solid with a polygon for a *base* and triangles for all the other faces.

Cylinder: A solid with two congruent, parallel circular bases.


Cone: A solid with a circular base and a vertex that is not in the same plane as the base.

Sphere: All the points in space that are the same distance away from a fixed point, called the center.

Hemisphere: Half of a sphere.

Height of a Prism or Cylinder: The length of a segment that is perpendicular to both bases.

Height of a Pyramid or Cone: The perpendicular distance from the base to the vertex.

Review of area formulas:

Area of a Rectangle: A = base times height or <math>A = length times width

Area of a Triangle: $A = \frac{1}{2} (base \ of \ triangle) (height \ of \ triangle)$

Area of a Circle: $A = \pi r^2$

Volume of a Square or Rectangular Prism: Volume = area of base height

V = BhOR LWH

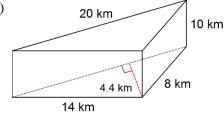
Volume of a Triangular Prism: Volume = area of base height

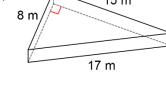
V = BhOR

 $V = \frac{1}{2} (base of triangle) (height of triangle) \bullet (height of prism)$

Volume of a Cylinder: Volume = area of base height

V = BhOR


 $V = \pi r^2 h$


Examples: Find the volume of each prism or cylinder.

a) 14 in

14 in

b)

4 km d)

11 km

e)

Volume of a Square or Rectangular Pyramid: Volume = $\frac{1}{3}$ area of base height

$$V = \frac{1}{3}Bh$$

OR

$$V = \frac{1}{3}LWH$$

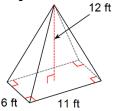
Volume of a triangular Pyramid: Volume = $\frac{1}{3}$ area of base height

$$V = \frac{1}{3}Bh$$

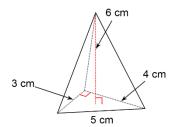
OR

$$V = \frac{1}{3} \left[\frac{1}{2} (base of triangle) (height of triangle) \right] \cdot (height of pyramid)$$

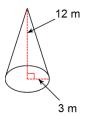
Volume of a Cone: Volume = $\frac{1}{3}$ area of base height

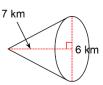

$$V = \frac{1}{3}Bh$$

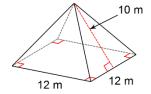
OR

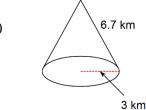

$$V = \frac{1}{3}\pi r^2 h$$

Examples: Find the volume of each pyramid or cone.

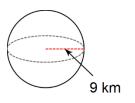

a)


b)

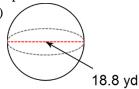

c)


d)

e)



f)



Examples: Find the volume of each sphere or hemisphere.

a)

b)

c)

