Date:

Section: 12.3

Objective: Arc length, sector area, more tangent & chord theorems

Arc Length: Arc Length = $\frac{\theta}{360^{\circ}}$ circumference of circle = $\frac{\theta}{360^{\circ}}$ $\cdot 2\pi r$

Examples: Find the length of AB. Write your answers in terms of π and as decimals rounded to the nearest hundredth.

a)

b)

c)

Sector Area: Sector Area = $\frac{\theta}{360^{\circ}}$ area of circle = $\frac{\theta}{360^{\circ}} \cdot \pi r^2$

Examples: Find the area of each sector. Write your answers in terms of π and as decimals rounded to the nearest tenth.

b)

c)

Theorem:: If two segments from the same point outside a circle are both tangent to the circle, then they are congruent.

If \overline{SR} and \overline{ST} are tangent to $\odot P$ at points R and T, then $\overline{SR} \cong \overline{ST}$.

Examples: \overline{DE} and \overline{DF} are both tangent to $\odot C$. Find the value of x.

Theorem: two chords intersect inside a circle, then the product of the lengths of the segments of one chord is equal to the product of the lengths of the segments of the other chord.

$$AF \cdot FC = BF \cdot FD$$

Examples: Find the value of x.

