

Theorem:

- If two chords intersect inside a circle, then the measure of each angle formed is the average of the measures of the arcs intercepted by the angle and its vertical angle.

$$
\begin{aligned}
& m \angle 1=m \angle 3=\frac{1}{2} m A B+m C D \\
& m \angle 2=m \angle 4=\frac{1}{2} m B C+m A D
\end{aligned}
$$

Examples: Find the value of x.
a)

b)

c)

d)

Inscribed Polygon: A polygon whose vertices all lie on a circle.

Theorems:

- If a triangle inscribed in a circle is a right triangle, then the hypotenuse is a diameter of the circle.
- If $\triangle A B C$ is a right triangle with hypotenuse $\overline{A B}$, then $\overline{A B}$ is a diameter of the circle.
- If a side of a triangle inscribed in a circle is a diameter of the circle, then the triangle is a right triangle.
- If $\overline{A B}$ is a diameter of the circle, then $\triangle A B C$ is a right triangle with $\overline{A B}$ as hypotenuse.

Examples: Find the values of x and y in $\odot P$.
a)

b)

c)

Theorem:

- If a quadrilateral can be inscribed in a circle, then its opposite angles are supplementary.

$$
\begin{aligned}
& m \angle D+m \angle F=180^{\circ} \\
& m \angle E+m \angle G=180^{\circ}
\end{aligned}
$$

Examples: Find the values of x and y.
a)

b)

c)

Find the measure of the arc or angle indicated.
a)

b)

c)

Theorems about Tangents:

- If a line is tangent to a circle, then it is perpendicular to the radius drawn at the point of tangency.

If line l is tangent to $\odot C$ at B, then $l \perp \overline{C B}$.

- In a plane, if a line is perpendicular to a radius of a circle at its endpoint on the circle, then the line is tangent to the circle.

If $l \perp \overline{C B}$, then line l is tangent to $\odot C$ at B.

Examples: Find the length of the missing segment. Assume that segments which appear to be tangent to the circle are tangent to the circle.
a)

b)

c)

d)

Examples: Determine whether $\overline{A B}$ is tangent to the circle. Explain your reasoning.
a)

b)

