

The Pythagorean Theorem: In a right triangle, the sum of the squares of the legs equals the square of the hypotenuse.
The Pythagorean Theorem: In a right triangle, $a^{2}+b^{2}=c^{2}$, or $^{\text {leg }}{ }^{2}+$ leg $^{2}=$ hypotenuse 2.

\star The hypotenuse (the longest side - the one across from the right angle) should always be by itself on one side of the equation.
$\star{ }^{* * *}$ It does not matter which leg is a or b.

To find the length of the hypotenuse:

$$
\begin{aligned}
& 2^{2}+4^{2}=c^{2} \\
& 4+16=c^{2} \\
& c^{2}=20 \\
& c=\sqrt{20} \\
& c=2 \sqrt{5} \approx 4.47
\end{aligned}
$$

To find the length of a leg:

$$
\begin{aligned}
& a^{2}+5^{2}=13^{2} \\
& a^{2}+25=169 \\
& a^{2}=169-25 \\
& a^{2}=144 \\
& a=\sqrt{144} \\
& a=12
\end{aligned}
$$

Examples: Find the length of the missing side of each triangle. Write answer as exact and rounded to the nearest hundredth.
a)

b)

c)

d)

e)

f)

g)

h)

i)

Distance Formula:

Example: Find the distance between $(-1,5)$ and $(7,-1)$.

1. Plot the two points on a graph and connect them with a segment.

2. Draw a right triangle with your segment as the hypotenuse.

3. Figure out the lengths of the legs.
4. Plug into the Pythagorean Theorem.

$$
\begin{aligned}
& c^{2}=a^{2}+b^{2} \\
& c^{2}=6^{2}+8^{2} \\
& c^{2}=36+64 \\
& c^{2}=100 \\
& c=\sqrt{100}=10
\end{aligned}
$$

-or-

Use the distance formula (but be careful with your negatives!)

$$
\begin{aligned}
d & =\sqrt{\left(x_{2}-x_{1}\right)^{2}+\left(y_{2}-y_{1}\right)^{2}} \\
& =\sqrt{(7-(-1))^{2}+((-1)-5)^{2}} \\
& =\sqrt{(8)^{2}+(-6)^{2}} \\
& =\sqrt{64+36} \\
& =\sqrt{100}=10
\end{aligned}
$$

Examples: Find the distance between each set of points.
a)

b)

c)

d) $(5,6)$ and $(-1,-2)$
e) $(4,7)$ and $(9,-3)$
f) $(-2,3)$ and $(-5,7)$

