

Triangle Proportionality Theorem: If a line parallel to one side of a triangle intersects the other two sides, then it divides the sides proportionally.


$$
\begin{gathered}
\text { In } \triangle Q R S, \text { if } \overline{T U} \| \overline{Q S}, \\
\text { then } \frac{R T}{T Q}=\frac{R U}{U S} .
\end{gathered}
$$

Converse of the Triangle Proportionality Theorem: If a line divides two sides of a triangle proportionally, then it is parallel to the third side.


In $\triangle Q R S$, if $\frac{R T}{T Q}=\frac{R U}{U S}$,
then $\overline{T U} \| \overline{Q S}$.

Examples: Find the value of the variable.
a)

c)

b)


Examples: Given the diagram, determine whether $\overline{B E} \| \overline{C D}$. Show work to support your answer.
a)

b)


Example: Complete the proportion using the figure.


$$
\frac{Q T}{Q R} \cong \frac{S U}{?}
$$

Midsegment of a Triangle: A segment that connects the midpoints of two sides of a triangle.
Midsegment Theorem: The segment connecting the midpoints of two sides of a triangle is parallel to the third side and is half as long.


Examples: Find the value of the variable.
a)

b)

c)

d)


