

So far, if we wanted to show that two figures are similar, we've had to show that all of the corresponding angles are congruent and all of the corresponding sides are proportional. Luckily, there are some shortcuts for triangles.

Angle-Angle Similarity Postulate (AA Similarity):

If two angles of one triangle are congruent to two angles of another triangle, then the two triangles are similar.

If $\angle J \cong \angle X$ and $\angle K \cong \angle Y$, then $\triangle J K L \sim \triangle X Y Z$

Examples: Determine whether the triangles are similar. Explain your reasoning. If they are similar, write a similarity statement.

Example: Write a similarity statement for the triangles. Then find the value of z.

Use the diagram to fill in the statements
a) $\angle B \cong$ \qquad
b) $\frac{A B}{D B}=\frac{B C}{?}$
c) What is the scale factor?

Side-Side-Side Similarity Theorem (SSS Similarity)

If the corresponding sides of two triangles are proportional, then the triangles are similar.

If $\frac{A B}{D E}=\frac{B C}{E F}=\frac{C A}{F D}$, then $\triangle A B C \sim \triangle D E F$

* TIP: When testing for SSS similarity, compare the shortest sides, longest sides, and medium sides.

Example: Is either $\triangle D E F$ or $\triangle G H J$ similar to $\triangle A B C$?

If an angle of one triangle is congruent to an angle of a second triangle and the lengths of the sides that include these angles are proportional, then the triangles are similar.

$$
\text { If } \angle X \cong \angle M \text { and } \frac{P M}{Z X}=\frac{M N}{X Y}, \text { then } \triangle X Y Z \sim \triangle M N P
$$

Examples: Determine whether the triangles are similar. If they are similar, write a similarity statement and determine the scale factor.
a)

b)

