SM 2

Section: 10.1

Objective: Ratios and Proportion

Ratio: A comparison of a number \boldsymbol{a} and a nonzero number \boldsymbol{b} using division.

Example: Ratios can be written in three forms: As a fraction $\frac{a}{b}$, or $a: b$, or a to b.
Simplify the following ratios:
$60 \mathrm{~cm}: 200 \mathrm{~cm} \rightarrow \frac{60 \mathrm{~cm}}{200 \mathrm{~cm}}=\frac{3}{10}$
$\frac{3 f t}{18 i n}$ (units must be the same) so, $\quad \frac{3 f t}{18 i n}=\frac{36 i n}{18 i n}=\frac{2}{1}$

Using ratios:

Using the figure at the right,

Find $A B$ and $B C$, if $A B: B C$ is $4: 1$.
$A B+B C=A C \rightarrow 4 x+x=30$

AC=30

Example:

The perimeter of a rectangle is 80 ft . The ratio of the length to the width is 7:3.
Find the length and the width of the rectangle.
Perimeter of a rectangle $=2 \mathrm{w}+2 \mathrm{~L}$ so,
$P=2(3 x)+2(7 x)$
$80=6 x+14 x$
$80=20 x$

$4=x$

Solving a proportion

Proportion: an equation that states that two ratios are equal.
Example: $\frac{a}{b}=\frac{c}{d}$

Cross product property: In a proportion the product of the extremes is equal to the product of the means.

Example: If $\frac{a}{b}=\frac{c}{d}$, then $a d=b c$.

Solve each proportion.

a. $\frac{15}{9}=\frac{10}{x}$
b. $\frac{7}{10}=\frac{a}{4}$
c. $\frac{9}{6}=\frac{m}{3}$
d. $\frac{8}{7}=\frac{k}{10}$
e. $\frac{2}{x-1}=\frac{4}{8}$
f. $\frac{k+5}{6}=\frac{2}{3}$
g. $\frac{8}{2 x+5}=\frac{5}{3}$
h. $\frac{2}{9}=\frac{4}{3 x+2}$

Solve each problem using a proportion. Show your work.
a. The money used in Western Samoa is called the Tala. The exchange rate is 17 Tala to $\$ 6$. How many dollars would you receive if you exchanged 51 Tala?
b. A model satellite has a scale of $3 \mathrm{~cm}: 2 \mathrm{~m}$. If the model satellite is 24 cm wide, then how wide is the real satellite?
c. A baby giraffe standing near a flagpole casts a shadow that is 25.5 ft . long. If the 17.4 - ft.-tall flagpole casts a shadow that is 76.6 ft . long, how tall is the baby giraffe?

