Date:
Section: 1.2
Objective: Use interval notation to describe inequalities. Determine whether or not a relation is a function and find its domain and range based on a graph.

Domain: The set of all \qquad (the x-values) of a relation.

- If a relation is represented by a graph, the domain is the set of all \qquad of points on the graph. You can think of it as the graph's shadow on the x-axis.

Range: The set of all \qquad (the y-values) of a relation.

- If a relation is represented by a graph, the range is the set of all of points on the graph. You can think of it as the graph's shadow on the y-axis.

If the graph is a set of unconnected points, the domain and range are just lists of the x and y coordinates, respectively. However, if the graphs contain connected points, they contain an infinite number of points, so we can't list the coordinates. One way we solve this is to use interval notation.

Interval Notation

Domain and range are often written in interval notation.

- The numbers in the parentheses are the endpoints - the points where the interval starts and stops.
- If an endpoint is included in the interval, put it in a bracket [or].
- If an endpoint is not included in the interval, put it in a parenthesis (or).
- If the interval goes on forever, use $-\infty$ or ∞. Infinity symbols always get put in parentheses (or).
- Multiple intervals are connected with the union sign \cup, which is the math symbol for "or".

| Graph | Interval
 Notation | Inequality
 Notation | Meaning |
| :--- | :---: | :---: | :---: | :---: |
| All real numbers | | | |

Tips for domain and range

- Read the domain from left to right and look at the numbers on the x-axis. Read the range from down to up and look at the numbers on the y-axis.
- Write the lower value or $-\infty$ first and the higher value or ∞ last.
- If the graph goes on forever without a boundary in some direction, the domain or range will involve $-\infty$ or ∞.
- Always use parentheses around $-\infty$ or ∞.
- Use a bracket [or] if the domain or range starts or ends at a number - there is a point at that number on the graph with that x - or y-coordinate.
- This happens if the graph has a vertex (a point where the graph changes direction) or an endpoint (a point where the graph starts or stops - represented by a filled-in circle).
- Use a parenthesis (or) if a number is not included in the domain or range (the graph gets really, really close to that x - or y-coordinate, but never actually gets there).
- This happens when there is an asymptote (a line that the graph gets really close to, but never actually touches). It can also happen if there are holes or gaps in the graph.

Example: State the domain in interval notation.
a)

b)

Domain:
Domain:

Domain:
d)

Domain:

Example: State the range in interval notation.
a)

Range:

c)

Range:

Range:

d)

Range:

Vertical Line Test

If it is possible for a vertical line to cross a graph more than once, then the graph is not the graph of a function.

The graph at left is not a function because one x-value has 3 different y-values.

Examples: Determine whether each graph is the graph of a function. Then state the domain and range.

a)

Function? Yes / No
Domain?
Range?
d)

Function? Yes / No
Domain?
Range?
g)

Function? Yes / No
Domain?
Range?

Function? Yes / No
Domain?
Range?
e)

Function? Yes / No
Domain?
Range?
h)

Function? Yes / No
Domain?
Range?
c)

Function? Yes / No

Domain?

Range?

f)

Function? Yes / No

Domain?

Range?

i)

Function? Yes / No

Domain?

Range?

