Date:

Section: 1.2

Objective: Use interval notation to describe inequalities. Determine whether or not a relation is a function and find its domain and range based on a graph.

Domain: The set of all _____ (the *x*-values) of a relation.

• If a relation is represented by a graph, the domain is the set of all _________ of points on the graph. You can think of it as the graph's shadow on the *x*-axis.

Range: The set of all _____ (the *y*-values) of a relation.

• If a relation is represented by a graph, the range is the set of all _______ of points on the graph. You can think of it as the graph's shadow on the y-axis.

If the graph is a set of unconnected points, the domain and range are just lists of the *x* and *y* coordinates, respectively. However, if the graphs contain connected points, they contain an infinite number of points, so we can't list the coordinates. One way we solve this is to use *interval notation*.

Interval Notation

Domain and range are often written in *interval notation*.

- The numbers in the parentheses are the endpoints the points where the interval starts and stops.
- If an endpoint is *included* in the interval, put it in a bracket [or].
- If an endpoint is *not included* in the interval, put it in a parenthesis (or).
- If the interval goes on forever, use $-\infty$ or ∞ . Infinity symbols always get put in parentheses (or).
- Multiple intervals are connected with the union sign \cup , which is the math symbol for "or".

Graph	Interval Notation	Inequality Notation	Meaning
-5 0 5		$\mathbb R$	All real numbers
-10 -5 0	(-∞,-3]		Everything less than or equal to -3
€ · · · · ⊕ · · · · · 0 5 10		<i>x</i> > 4	Everything greater than 4
$\begin{array}{c c} \bullet & \bullet & \bullet & \bullet \\ \hline \bullet & \bullet & \bullet & \bullet & \bullet \\ 0 & 5 & 10 \end{array}$	(3,7)		Everything between 3 and 7, not including either 3 or 7
$\begin{array}{c c} \hline \hline \hline \\ \hline \\ \hline \\ 0 \\ \hline \\ 0 \\ \hline \\ 5 \\ \hline \\ 10 \\ \hline \\ \hline \\ \hline \\ \hline \\ 10 \\ \hline \\ $		$5 \le x \le 8$ x \ge 5 and x \le 8	Everything between 5 and 8, including both 5 and 8
 	[-2,1)		Everything between -2 and 1, including -2, but not including 1
$-5 \qquad 0 \qquad 5$		$x \le -1$ or $x \ge 2$	Everything that is <i>either</i> less than <i>or</i> equal to -1 or greater than or equal to 2
$-5 \qquad 0 \qquad 5$	$(-\infty,1)\cup[4,\infty)$		Everything that is <i>either</i> less than 1 <i>or</i> greater than or equal to 4

SM 2

Tips for domain and range

- Read the domain from left to right and look at the numbers on the x-axis. Read the range from down to up and look at the numbers on the y-axis.
 - Write the lower value or $-\infty$ first and the higher value or ∞ last.
- If the graph <u>goes on forever without a boundary</u> in some direction, the domain or range will involve -∞ or ∞.
 - Always use parentheses around $-\infty$ or ∞ .
- Use a bracket [or] if the domain or range starts or ends at a number there is a point at that <u>number</u> on the graph with that *x* or *y*-coordinate.
 - This happens if the graph <u>has a vertex</u> (a point where the graph changes direction) or <u>an</u> <u>endpoint</u> (a point where the graph starts or stops – represented by a filled-in circle).
- Use a parenthesis (or) if a number *is not included* in the domain or range (the graph gets really, really close to that *x* or *y*-coordinate, but never actually gets there).
 - This happens when <u>there is an *asymptote*</u> (a line that the graph gets really close to, but never actually touches). It can also happen if there are holes or gaps in the graph.

Example: State the domain in interval notation.

Domain:

Domain:

Example: State the range in interval notation.

Vertical Line Test

If it is possible for a vertical line to cross a graph more than once, then the graph is not the graph of a function.

The graph at left is not a function because one *x*-value has 3 different *y*-values.

Examples: Determine whether each graph is the graph of a function. Then state the domain and range.

Function? Yes / No

Domain?

a)

Function? Yes / No

Domain?

Range?

Function? Yes / No

Domain?

Range?

Function? Yes / No

Domain?

Range?

Function? Yes / No

Domain?

Range?

Domain?

Function? Yes / No

Domain?

Range?

Function? Yes / No

Domain?

Range?