Objective: Rational Exponents

If *n* is a positive integer greater than 1 and $\sqrt[n]{a}$ is a real number then $a^{1/n} = \sqrt[n]{a}$.

★ The denominator of the exponent tells you what type of root to take.

Examples: Write an equivalent expression using radical notation and, if possible, simplify.

a)
$$25^{1/2}$$

c)
$$(xy^2z)^{1/6}$$

d)
$$\left(36x^{10}\right)^{1/2}$$

e)
$$2x^{1/4}$$

f)
$$(2x)^{1/4}$$

Examples: Write an equivalent expression using exponential notation.

a)
$$\sqrt[7]{2xy}$$

b)
$$\sqrt[4]{\frac{ab^3}{7}}$$
 c) $\sqrt{3z}$ d) $3\sqrt{z}$ e) $\sqrt[5]{xy^2z}$

c)
$$\sqrt{3z}$$

d)
$$3\sqrt{z}$$

e)
$$\sqrt[5]{xy^2z}$$

Positive Rational Exponents

If m and n are positive integers (where $n \neq 1$) and $\sqrt[n]{a}$ exists, then $a^{m/n} = \sqrt[n]{a^m} = \left(\sqrt[n]{a}\right)^m$.

e.g.)
$$8^{2/3} = (\sqrt[3]{8})^2 = 2^2 = 4$$
 or $8^{2/3} = \sqrt[3]{8^2} = \sqrt[3]{64} = 4$

$$8^{2/3} = \sqrt[3]{8^2} = \sqrt[3]{64} = 4$$

Examples: Write an equivalent expression using radical notation and simplify.

a)
$$t^{5/6}$$

b)
$$9^{3/2}$$

c)
$$64^{2/3}$$

d)
$$(2x)^{3/4}$$

e)
$$2x^{3/4}$$

Examples: Write an equivalent expression using exponential notation.

a)
$$\sqrt[3]{x^5}$$

b)
$$\sqrt[7]{9^2}$$

c)
$$\left(\sqrt[5]{6n}\right)^3$$

d)
$$6\sqrt[5]{n^3}$$

c)
$$(\sqrt[5]{6n})^3$$
 d) $6\sqrt[5]{n^3}$ e) $(\sqrt[4]{2m})^2$

Negative Rational Exponents

For any rational number m/n, and any nonzero real number $a^{m/n}$, $a^{-m/n} = \frac{1}{a^{m/n}}$.

★ The sign of the base is not affected by the sign of the exponent.

Examples: Write an equivalent expression using positive exponents and, if possible, simplify.

a)
$$49^{-1/2}$$

b)
$$(3mn)^{-2/5}$$

c)
$$7x^{-2/3}$$

Laws of Exponents: The laws of exponents apply to rational exponents as well as integer exponents.

Examples: Use the laws of exponents to simplify.

a)
$$2^{2/5} \cdot 2^{1/5}$$

b)
$$\frac{x^{7/3}}{x^{4/3}}$$

c)
$$\left(19^{2/5}\right)^{5/3}$$

d)
$$x^{1/2} \cdot x^{2/3}$$

e)
$$y^{-4/7} \cdot y^{6/7}$$

f)
$$\frac{z^{3/4}}{z^{2/5}}$$

g)
$$\frac{x^{3/4} \cdot x^{1/6} \cdot y}{y^{1/2}}$$

h)
$$\frac{\left(2x^{2/5}y^{-1/3}\right)^5}{x^2y}$$

To Simplify Radical Expressions:

- 1. Convert radical expressions to exponential expressions.
- 2. Use arithmetic and the laws of exponents to simplify.
- 3. Convert back to radical notation as needed.

Examples: Use rational exponents to simplify. Do not use exponents that are fractions in the final answer.

a)
$$\sqrt[8]{z^4}$$

b)
$$\left(\sqrt[3]{a^2bc^4}\right)^9$$

c)
$$\sqrt{x} \cdot \sqrt[4]{x}$$

d)
$$\sqrt[6]{y^2} \cdot \sqrt[9]{y}$$

e)
$$\frac{\sqrt[3]{k}}{\sqrt[7]{k^2}}$$

f)
$$\frac{\sqrt[8]{m^4}}{\sqrt[6]{m}}$$

$$g)\sqrt[4]{\sqrt[5]{x}}$$

h)
$$\sqrt[3]{2} \cdot \sqrt[5]{3}$$