SM 2

a

Date:

Section: 3.3

Objective: Radical operations

The Product Rule for Radicals: For any real numbers $\sqrt[n]{a}$ and $\sqrt[n]{b}$, $\sqrt[n]{a} \cdot \sqrt[n]{b} = \sqrt[n]{a \cdot b}$.

Caution: The product rule doesn't work if you are trying to multiply the even roots of <u>negative</u> numbers, because those roots are not real numbers. For example, $\sqrt{-2} \cdot \sqrt{-8} \neq \sqrt{16}$.

Caution: The product only applies when the radicals have the same index: $\sqrt[3]{5} \cdot \sqrt[4]{6} \neq \sqrt[12]{30}$.

Examples: Multiply.

a) $\sqrt{7} \cdot \sqrt{5}$ b) $5\sqrt{2} \cdot \sqrt{8}$ c) $2\sqrt{5} \cdot 7\sqrt{15}$ d) $\sqrt{3} \cdot \sqrt{3}$

e)
$$(\sqrt{8})^2$$
 f) $(3\sqrt{11})^2$ g) $\sqrt[3]{3} \cdot \sqrt[3]{9}$ h) $2\sqrt[3]{10} \cdot 6\sqrt[3]{25}$

Question: Can you add and subtract radicals the same way you multiply and divide them?

e.g.) Since $\sqrt{a} \cdot \sqrt{b} = \sqrt{ab}$, does $\sqrt{a} + \sqrt{b} = \sqrt{a+b}$? NO!!!!!!!!!

Don't make the following mistakes:

- $\sqrt{2} + \sqrt{5} \neq \sqrt{7}$
- $\sqrt{9+16} \neq 3+4$
- $\sqrt{m} \sqrt{n} \neq \sqrt{m n}$
- $\sqrt{x^2 4} \neq x 2$
- $\left(\sqrt{x} + \sqrt{y}\right)^2 \neq x + y$

Like Radicals: Radicals with the same index and the same radicand.

Examples: Determine whether the following are like radicals. If they are not, explain why not.

a) $\sqrt{3}$ and $\sqrt{2}$ b) $4\sqrt{5}$ and $-3\sqrt{5}$ c) $2\sqrt{x}$ and $\sqrt[3]{x}$

Steps for Adding and Subtracting Radicals:

- 1. Simplify each radical completely.
- 2. Combine like radicals. When you add or subtract radicals, you can *only* combine radicals that have the same index and the same radicand. The radical itself (the root) does not change. You simply add or subtract the coefficients.

Examples:

a)
$$5\sqrt{3x} - 7\sqrt{3x}$$
 b) $4\sqrt{11} + 8\sqrt{11}$

c)
$$10\sqrt{6} + 3\sqrt{2} - 8\sqrt{6}$$
 d) $\sqrt{20} - \sqrt{50} + \sqrt{45}$

e)
$$2\sqrt{50} + 4\sqrt{500} - 6\sqrt{125}$$
 f) $\sqrt[3]{54} - 5\sqrt[3]{16} + \sqrt[3]{2}$

Multiplying Radical Expressions: Use the Product Property. Use the Distributive Property and FOIL to multiply radical expressions with more than one term.

Examples: Multiply.

a)
$$\sqrt{3}(5+\sqrt{30})$$
 b) $\sqrt{2}(\sqrt{6}-3\sqrt{2})$ c) $(\sqrt{5}-\sqrt{6})(\sqrt{7}+1)$

d)
$$(5\sqrt{3}-4\sqrt{2})(\sqrt{3}+\sqrt{2})$$
 e) $(4\sqrt{3}-1)^2$ f) $(\sqrt{2}+5)(\sqrt{2}-5)$