Date:

Section: 3.2

SM 2

Objective: Simplifying Radical Notes

Square Root: For an integer n greater than 1, if $a^2 = k$, then $\sqrt{k} = a$ Radical Sign: Given $\sqrt{k} = a$, \sqrt{k} is the radical sign Radicand: Given $\sqrt{k} = a$, "k" is the radicand (The number under the square root sign.)

Perfect squares: When a number is multiplied by itself, the product is a perfect square

List of common perfect squares: 1, 4, 9, 16, 25, 36, 49, 64, 81, 100, 121, 144, 169, 196, 225

Perfect cubes: When a number is multiplied by itself twice, the product is a perfect cube (When a number is the product of the same factor three times)

List of common perfect cubes: 1, 8, 27, 64, 125

Examples: Simplify each of the following:

a) $\sqrt{121}$ b) $\sqrt{81}$ c) $\sqrt{\frac{4}{9}}$ d) $\sqrt{y^4}$ e) $\sqrt{z^{14}}$

nth Root: A radical or the principal nth root of k: $\sqrt[n]{k}$ k, the radicand, is a real number n, the index, is a positive integer greater than one.

Index: For an integer n greater than 1, if $a^n = k$, then $\sqrt[n]{k} = a$ and a is the nth root of k.

Examples: Simplify each expression, if possible.

a) $\sqrt[3]{125}$ b) $\sqrt[4]{81}$ c) $\sqrt[5]{32}$ d) $\sqrt[3]{8x^6y^3}$

Steps To Simplify a Radical Expression with Index *n* Using a Factor Tree:

- 1. Factor the radicand.
- 2. Split the radicand into groups of the index
- 3. List the number from each group only once on the outside of the radicand
- 4. Leave any non-index groups inside the radical
- 5. Multiply the outside numbers together, multiply the numbers left inside the radical together.

Examples: Simplify each expression a) $\sqrt{12}$	n. b) √40	c) 5√72
d) $\sqrt{20x^2y^3}$	e) $2xy^2\sqrt{300x^3y^5}$	f) ∛54
g) $7\sqrt[3]{40}$	h) $\sqrt[3]{32t^7u^9}$	i) $3m\sqrt[3]{40mn^6}$

j) ∜240

k) $\sqrt[4]{x^6 y^9 z^3}$

l) $pr\sqrt[5]{p^7q^{23}r^{14}}$