Section 7.5

Objective: more quadratic story notes

Steps for solving stories:

- 1. READ the story, write down the information needed and define a variable
- 2. Write an equation
- 3. Solve for variable
- 4. Check

Tips for solving story problems:

- Identify what you know.
- · What are you trying to find out?
- Draw a picture or diagram to help you visualize the situation.
- Carefully define your variables.
- Translate the words into symbols.
- Use appropriate units.
- Make sure your answer makes sense.

Hints:

• Sum: + Difference: - Product: × Quotient: ÷

* Words that tell you to look for the vertex maximum, minimum, highest, lowest, biggest, littlest, largest, smallest, maximize, minimize.

EXAMPLES:

1. A ski club sells calendars to raise money. The profit, P, in dollars, from selling x calendars is given by the equation $P(x) = 120x - x^2$.

Define your variables: x = Calendars P(x) = y = Profit \$

Sketch a graph of the situation. Label the axes clearly.

How much profit will the club make from selling 50 calendars?

How many calendars must be sold for the club to make \$2700?

$$2700 = -\chi^{2} + 120\chi$$

$$+\chi^{2} - 120\chi + \chi^{2} - 120\chi$$

$$\chi^{2} - 120\chi + 2700 = 0$$

$$\chi = \frac{+120 \pm \sqrt{(-120)^{2} - 4(1)(2700)}}{2(1)}$$

$$\frac{120 \pm \sqrt{3600}}{2(1)}$$

$$\frac{120 \pm \sqrt{3600}}{2}$$

$$\frac{2(1)}{2}$$

$$\frac{(120 \pm 60)}{2} = 90 \text{ calendars}$$

$$\frac{120 \pm 60}{2} = 30$$

How many calendars must be sold to maximize profit?

$$\frac{-b}{2a} = \frac{-120}{2(-1)} = \frac{-120}{-2} = 60$$
 calendars vertex

What is the maximum profit?

2. A rock is thrown upward from the ground by the wheel of a truck. Its height in feet above the ground after t seconds is given by the function $h(t) = -16t^2 + 20t$.

Define your variables: x = t = **Seconds**, h(t) = y = **height in feet**

Draw a sketch of the graph representing the path of the height of the rock. Label your axes.

$$-16t^2 + 20t$$

a: -16 b=20 c=0

How long does it take the rock to reach its maximum height?

$$X = \frac{-b}{2a} - \frac{-20}{2(-1b)} = \frac{-20}{-32}$$

, 625 Sec

What is the maximum height of the rock?

How long will it take for the rock to return to the ground?

$$X = -\frac{b \pm \sqrt{13^2 - 4ac}}{2a}$$

$$-20 \pm \sqrt{(20)^2 - 4(-16)(6)}$$

$$-20 \pm \sqrt{400}$$

$$-32$$

$$-20 \pm 20$$

$$-32$$

$$-32$$

$$-(-20-20)$$

$$-32$$

$$-(-20-20)$$

$$-32$$

$$-(-20-20)$$

$$-32$$

$$-(-20-20)$$

$$-(-20-20)$$

$$-(-20-20)$$

$$-(-20-20)$$

$$-(-20-20)$$

$$-(-20-20)$$

4. The cost C in dollars, of manufacturing x bikes per week at a production plant is given by the function $C(x) = 2x^2 - 800x + 92,000$.

Define your variables: $x = b_1 kes per week$. C(x) = y = dollars

Sketch a rough graph of the cost equation. Be sure to label your axes. Use the *y*-intercept and the direction of opening to help draw the graph.

 $C(x) = 2x^2 - 800x + 92,000$ a=2 b=-800 c=92,000yint

How much does it cost to manufacture 50 bikes per week? Show your work.

replace x with 50
$$C(50) = 2(50)^2 - 800(50) + 92,000$$

$$57,000$$

Find the number of bikes that must be manufactured each week to minimize the cost. Show your work.

Find the minimum cost. Show your work.

$$C(200) = 2(200)^2 - 800(200) + 92,000$$