Section 4.2 Notes

Objective: Adding and Subtracting Polynomials

Constant: A monomial that contains no variables, like 23 or -1.

EXAMPLES: 7, 18, -6, \frac{2}{3}, -\frac{4}{9}.

Coefficient: The numerical part of a monomial (the number being multiplied by the variables.)

EXAMPLES: 3x 3 is the coefficient

7 x⁵ 7 is the coefficent

Variable: A letter that represents an unknown number

8x ← x is the EXAMPLES: X, y,9,

Expression: A term or terms (there is no equal sign)

EXAMPLES: $\chi^2 + 3\chi$

Terms: The monomials that make up a polynomial. Terms are separated by + or - signs.

Monomial: An expression that is a number, a variable, or numbers and variables multiplied together. Monomials only have variables with whole number exponents and never have variables in the denominator of a fraction or variables under roots.

Monomials: 5b,
$$\frac{xyz}{8}$$
, -w, 23, x^2 , $\frac{1}{3}x^3y^4$ **Not Monomials:** $\frac{1}{x^4}$, $\sqrt[3]{x}$, a^{-1} , $z^{\frac{1}{5}}$

Not Monomials:
$$\frac{1}{x^4}$$
, $\sqrt[3]{x}$, a^{-1} , $z^{\frac{1}{5}}$

Binomial: A polynomial with two unlike terms.

Trinomial: A polynomial with three unlike terms.

EXAMPLE:
$$\chi^2-4x+2$$

Polynomial: A monomial or several monomials joined by + or - signs.

Like Terms: Terms whose variables and exponents are exactly the same

$$3x$$
, $5x$ $3x+5x=8x$ $4x^2$, $-15X^2$
I could add these to get $8x$

Standard form: Terms are in descending order (highest power first to lowest power and at the end is the constant $= 3x^2-2x-5$ $= 4x^5-7x^3+3x+4$

How to find the degree of a polynomial: Find the term with the highest exponent....that's the degree of the polynomial $4x^5 - 7x^3 - 3x + 4$ degree is 5.

Reasons for not a polynomial: Negative exponent, variable in the denominator, exponent is a fraction, variable under a radical sign.

EXAMPLES
$$\sqrt{x}$$
; $\frac{3}{x^5}$ $4x^{-3}$

Examples: Decide whether each expression is a polynomial. If it is, state the degree of the polynomial. If it is not, explain why not.

a)
$$5x^4 + 2x^3 + 6x$$

yes degree 4

b)
$$-\frac{4}{3}a - a^5$$

yes degree 5

c)
$$\frac{12}{m+2}$$

d)
$$6c^{-2}+c-1$$

NO; "C"a variable
has a negative
Power

mis a variable in the denominator

e)
$$6z^{\frac{1}{2}} + 5z^2 - 2$$

no "Z" has a power that is a fraction

h)
$$3\sqrt{x+2}$$

No

X is in radicand

X is in \sqrt{x}

Adding and Subtracting Polynomials

To add or subtract polynomials, combine like terms. Add or subtract the coefficients. The variables and exponents do not change. *Remember to subtract everything inside the parentheses after a minus sign*. Subtract means "add the opposite," so change the minus sign to a plus sign and then change the signs of all the terms inside the parentheses.

Examples: Simplify each expression.

a)
$$(5n^{2}-2)+(7-3n^{2})$$

 $5n^{2}-2+7-3n^{2}$
 $-2+7=5$
 $5n^{2}-3n^{2}=2n^{2}$
 $2n^{2}+5r+1r^{2}-4r$
 $3r^{2}+1r^{2}+5r-4r$
 $3r^{2}+1r$
answer $2n^{2}+5$
c) $(4x^{2}-3x+1)+(-2x^{2}+5x-6)$
 $4x^{2}-3x+1+-2x^{2}+5x-6$
 $4x^{2}-2x^{2}-3x+5x+1-6$
 $4x^{2}-2x^{2}-3x+5x+1-6$
 $3z^{2}+18z-8$
 $3z^{2}+18z-8$

e)
$$(2w^2+3w)-(4w^2+w)$$
 $2w^2+3w-4w^2-\omega$
 $2w^2-4w^2+3w-1\omega$
 $2w^2-4w^2+3w-1\omega$
 $2(u^3-4u^2+u)-(2u^2-5u^3)$
 $2(u^3-4u^2-2u^2+4u)$
 $2(u^3-6u^2+4u)$
 $2(u^3-6u^2+4u)$