Section 3.2 Objective: Simplifying Radical Notes

uare Root: For an integer n greater than 1, if $a^2 = k$, then $\sqrt{k} = a$ *idical Sign:* Given $\sqrt{k} = a$, $\sqrt{}$ is the radical sign

Radicand: Given $\sqrt{k} = a$, "k" is the radicand (The number under the square root sign.)

Perfect squares: When a number is multiplied by itself, the product is a perfect square

List of common perfect squares: 1, 4, 9, 16, 25, 36, 49, 64, 81, 100, 121, 144, 169, 196, 225

Perfect cubes: When a number is multiplied by itself twice, the product is a perfect cube

(When a number is the product of the same factor three times)

List of common perfect cubes: 1, 8, 27, 64, 125

Examples: Simplify each of the following:

a)
$$\sqrt{121}$$

nth Root: A radical or the principal nth root of k: $\sqrt[n]{k}$

- k, the radicand, is a real number
- n, the index, is a positive integer greater than one.

Index: For an integer n greater than 1, if $a^n = k$, then $\sqrt[n]{k} = a$ and a is the nth root of k.

Examples: Simplify each expression, if possible.

Steps To Simplify a Radical Expression with Index n Using a Factor Tree:

- 1. Factor the radicand.
- 2. Split the radicand into groups of the index
- 3. List the number from each group only once on the outside of the radicand
- 4. Leave any non-index groups inside the radical
- 5. Multiply the outside numbers together, multiply the numbers left inside the radical together.

Examples: Simplify each expression.

