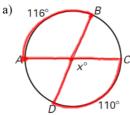
Section 12.2

Objective: Tangent and Chord Theorems Notes

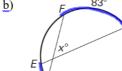
Theorem:

. If two chords intersect inside a circle, then the measure of each angle formed is the average of the measures of the arcs intercepted by the angle and its vertical angle.

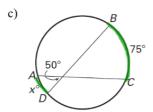


$$m\angle 1 = m\angle 3 = \frac{1}{2} \left(m\widehat{AB} + m\widehat{CD} \right)$$
$$m\angle 2 = m\angle 4 = \frac{1}{2} \left(m\widehat{BC} + m\widehat{AD} \right)$$

rember this crosses inside circle


Examples: Find the value of x.

Angle = 1 (by arc + little arc)



$$\chi = \frac{1}{2} \left(116 + 110 \right)$$

$$X = \frac{1}{2}(226)$$

$$\chi = \frac{1}{2}(104)$$

This time we need an arc.

Set up equation

angle = ½ (bigarc+littleam)

$$2(122) = 2 \cdot \frac{1}{2} (\times + 114)$$

130=X

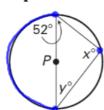
Another way to remember:

If you have an angle and an arc and heed to find the other arc

Multiply angle by 2 = big arc + little arc

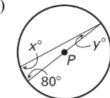
2(angle) = big are + little are

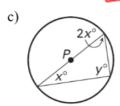
Inscribed Polygon: A polygon whose vertices all lie on a circle.


Theorems:

- If a triangle inscribed in a circle is a right triangle, then the hypotenuse is a diameter of the circle.
- If △ABC is a right triangle with hypotenuse AB, then AB is a diameter of the circle.
- If a side of a triangle inscribed in a circle is a diameter of the circle, then the triangle is a right triangle.
- If \(\overline{AB}\) is a diameter of the circle, then \(\triangle ABC\) is a right triangle with \(\overline{AB}\) as hypotenuse.

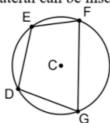
Examples: Find the values of x and y in $\odot P$.


a)



Since x is opposite hypotenose and hypotenose is diameter

y=180-90-52 y=38°1

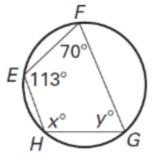

y is opposite diameter

Sum of angles in a triangle is 180°

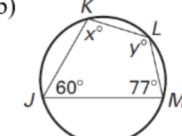
2

Theorem:

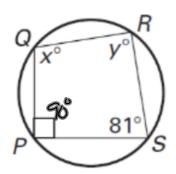
• If a quadrilateral can be inscribed in a circle, then its opposite angles are supplementary.


$$m\angle D + m\angle F = 180^{\circ}$$

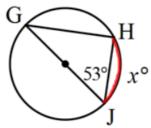
$$m\angle E + m\angle G = 180^{\circ}$$

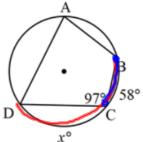

opposite angles and to 180°

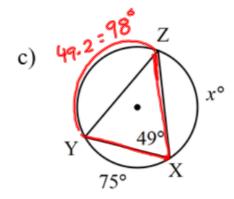
Examples: Find the values of x and y.


a)

b)




Find the measure of the arc or angle indicated.

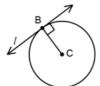


GJ is a diameter

b)

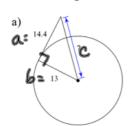
<a >+ 2c = 180

YZ is not a diameter

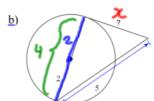

An enfire circle=360°

Theorems about Tangents:

• If a line is tangent to a circle, then it is perpendicular to the radius drawn at the point of tangency.

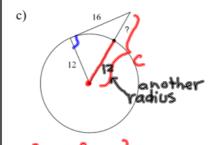

If line l is tangent to $\odot C$ at B, then $l \perp \overline{CB}$.

 In a plane, if a line is perpendicular to a radius of a circle at its endpoint on the circle, then the line is tangent to the circle.



If $l \perp \overline{CB}$, then line l is tangent to $\odot C$ at B.

Examples: Find the length of the missing segment. Assume that segments which appear to be tangent to the circle are tangent to the circle.



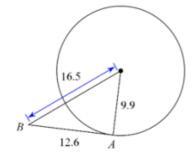
Use
$$a^2 + b^2 = c^2$$
 $14.4^2 + 13^2 = c^2$
 $376.36 = c^2$
 $\sqrt{376.36} = c$
 $19.4 \approx c$



radius = 2 so
diameter = 4

$$\chi^2 + 4^2 = 5^2$$

 $\chi^2 + 16 = 25$
 $\chi^2 = 25 - 16$
 $\chi^2 = 9$
 $\chi = 3$

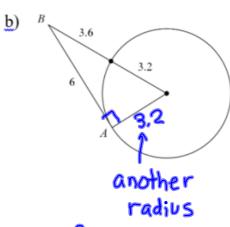


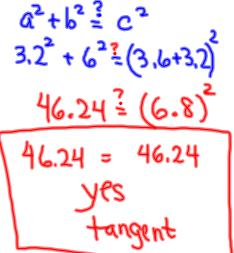
$$|2^{2} + 16^{2} = C^{2}$$

 $|400 = \text{hypotenuse}|$
 $|400 = \text{hypotenuse}|$
 $|20 = \text{hypotenuse}|$
 $|20 = 12 + ?|$
 $|20 - 12 = ?|$

radius = 8.4 hypotenuse = 8.4+5.6 $\chi^2 + 8.4^2 = (8.4+5.6)^2$ $\chi^2 + 8.4^2 = (14)^2$ $\chi^2 = 14^2 - 8.4^2$ $\chi^2 = 125.44$ $\chi = \sqrt{125.44}$ **Examples:** Determine whether \overline{AB} is tangent to the circle. Explain your reasoning.

a)


Does a2+62= c2


if yes it's tangent if no it is not tangent

9.92 + 12.62 = 16.53

$$[256.77 \neq 272.25]$$

Not tangent

