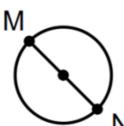
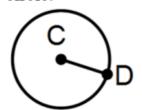

Section 12.1

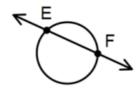
Objective: circle vocabulary, arc and angle measures (Notes)


Circle: All points in a plane that are the same distance from a given point, called the center of the circle.

Chord: A segment with both endpoints on a circle.

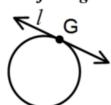

 \overline{AB} is a chord.

Diameter: A chord that passes through the center of a circle.

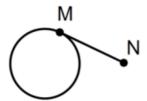

 \overline{MN} is a diameter.

Radius: A segment with one endpoint on the circle and one endpoint at the center of the circle.

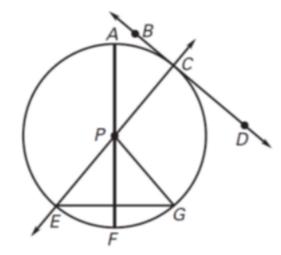
 \overline{CD} is a radius.


Secant: A line that intersects a circle at two points.

 \overrightarrow{EF} is a secant.


Tangent: A line in the plane of the circle that intersects a circle at exactly one point.

Point of Tangency: The point where a tangent intersects a circle.


Line l is a tangent. G is the point of tangency.

Tangent Segment: A segment that touches a circle at one of its endpoints and lies in the line that is tangent to the circle at that point.

 \overline{MN} is a tangent segment.

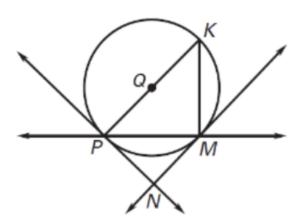
Example: In circle P, name the term that best describes the given line, segment, or point.

 \overline{AF} diameter

 \overline{EG} chord

PF radius

PG radius


c point of tangency

CE secont

BD tangent line

P center of circle

Example: In $\bigcirc Q$, identify a chord, a diameter, two radii, a secant, two tangents, and two points of tangency.

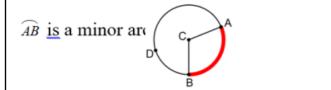
Chord: PM , KM

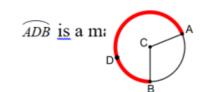
Radii: QK,QP

Tangents: MN, FN

Diameter: PK

Secant: PM

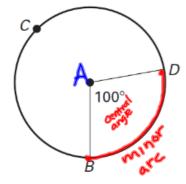

Points of tangency:


M for tangent line MN?
P for tangent line PN

Central Angle: An angle in a circle whose vertex is the center of the circle and whose sides are radii of the circle

Minor Arc: All the points on a circle that lie in the interior of a central angle whose measure is less than 180°.

Major Arc: All the points on a circle that do not lie on the corresponding minor arc.



Measure of a Central Angle: is the measure of the intercepted arc.

Measure of a Minor Arc: is the measure of its central angle.

Measure of a Major Arc: 360° minus the measure of the minor arc.

Example:

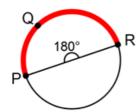
Measure of central angle: 100°

Measure of the minor arc:

Measure of the major arc: 260°

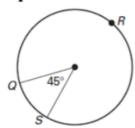
360°-100° = 260°

Center Is

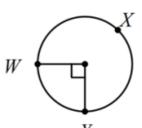

point A

Name the central angle: <u>ABAD</u> or <u>ADAB</u>

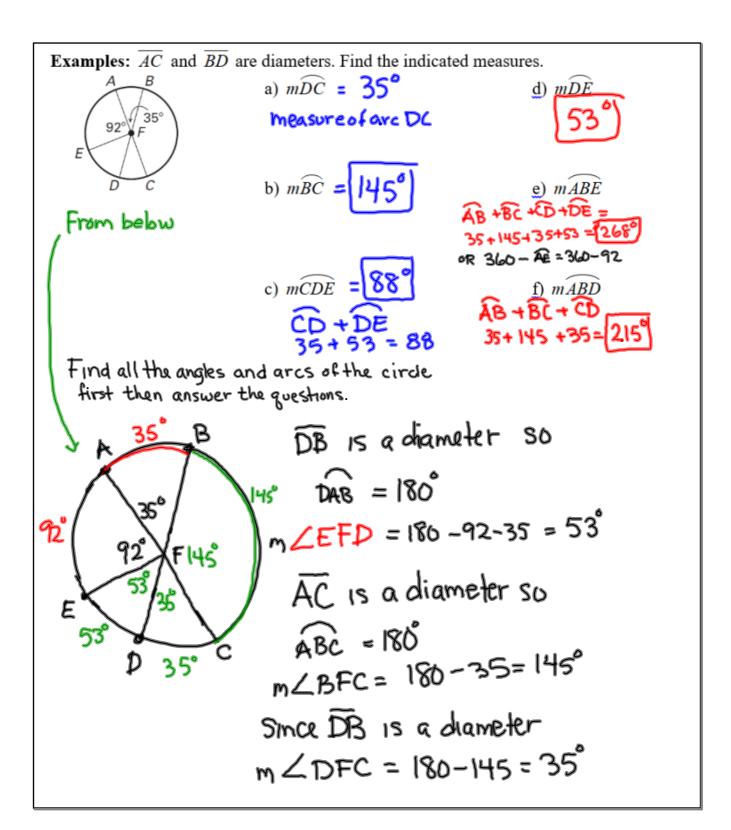
Name the minor arc: BD or DB


Name the major arc: DCB or BCD

must use 3 letters in order around circle Semicircle: An arc whose central angle measures 180°.

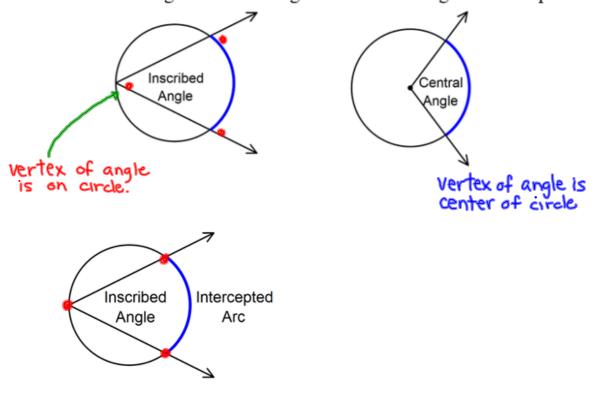

Examples: Name the major and minor arcs and the central angle. Find the measure of each.

a)


minor arc Qs = 45°

<u>b</u>)

Minorarc by 90°


major arc WXY 270° 360-90=270 J

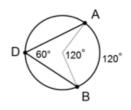
Inscribed Angle: An angle whose vertex is on a circle and whose sides contain chords of the circle.

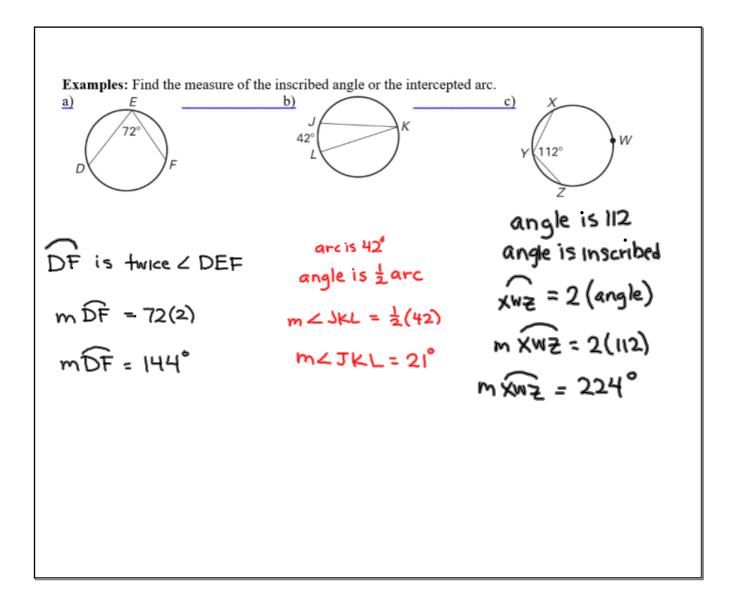
Intercepted Arc: An arc that lies in the interior of an inscribed angle and has endpoints on the sides of the angle.

WARNING: Don't get inscribed angles and central angles mixed up!

Theorem: If an angle is inscribed in a circle, then its measure is half the measure of its intercepted arc.

Example:




$$m\angle ADB = \frac{1}{2}\widehat{mAB}$$

$$\widehat{mAB} = 2m\angle ADB$$

$$m\angle ADB = 60^{\circ}$$

$$\widehat{mAB} = 120^{\circ}$$

