Polynomial Inequalities: Every polynomial inequality can be written in the form $f(x)>0, f(x) \geq 0$, $f(x)<0, f(x) \leq 0$ where $f(x)$ is a polynomial. There is a fundamental connection between inequalities and the positive or negative sign of the corresponding expression $f(x)$:

1. To solve the inequality $f(x)>0$ is to find the values of x that make $f(x)$ positive.
2. To solve the inequality $f(x)<0$ is to find the values of x that make $f(x)$ negative.
3. If the expression $f(x)$ is a product, determine its sign by determining the sign of each of its factors.

Note: To sketch a graph of a polynomial use end behavior, multiplicity of real zeros, and a chart of signs.
Examples: Determine the x values that cause the polynomial to be zero, positive and negative.
a) $f(x)=(x-7)(3 x+1)(x+4)$
b) $f(x)=(x+2)^{3}\left(4 x^{2}+1\right)(x-9)^{4}$

Solve the polynomial inequality using a sign chart. Support graphically.

$$
(2 x+1)(x-2)(3 x-4) \leq 0
$$

$$
x^{3}-4 x^{2}+x+6 \geq 0
$$

$$
(3-2 x)^{2}\left(x^{2}+4\right) \leq 0
$$

$$
(3-2 x)^{2}\left(x^{2}+4\right) \geq 0
$$

$$
(3-2 x)^{2}\left(x^{2}+4\right)<0
$$

$$
(3-2 x)^{2}\left(x^{2}+4\right)>0
$$

Determine the x values that cause the function to be zero, undefined, positive and negative
$\frac{x^{2}-4}{x^{2}+4}$
$\frac{x+2}{x^{2}-9}$

$$
\frac{x^{2}+3 x-10}{x^{2}-6 x+9}
$$

Solve the inequality using a sign chart.

$$
\frac{x^{2}-4}{x^{2}+4} \leq 0 \quad \frac{x+2}{x^{2}-9} \geq 0 \quad \frac{x^{2}+3 x-10}{x^{2}-6 x+9}<0
$$

