Pre-Calculus Chapter 1 Review

Determine whether the relation represents a function. If it is a function, state the domain and range.

Not a function: x=4 is used twice with two different y-values.

Domain: {29, 4, 4, 5, 13} or {29, 4, 5, 13}

Range: {-2, -1, 0, 1, 3}

Find the value for the function.

2) Find f(2) when
$$f(x) = \frac{x^2 - 8}{x + 3}$$
.

<u>4-8</u>

Find the domain of the function.

3)
$$h(x) = \frac{x-4}{x^3-64x}$$

$$x^3$$
-64 $x \neq 0$

$$x(x^2-64) \neq 0$$

$$x(x-8)(x+8) \neq 0$$

$$\{x \mid x \neq 0, 8, -8\}$$

4)
$$f(x) = x^2 + 3$$

This is a quadratic function and the domain is $(-\infty,\infty)$

For the given functions f and g, find the requested function and state its domain.

5)
$$f(x) = 3 - 4x$$
; $g(x) = -7x + 4$
Find $f + g$.

$$3-4x + -7x+4$$

-11x+7 domain: $(-\infty,\infty)$

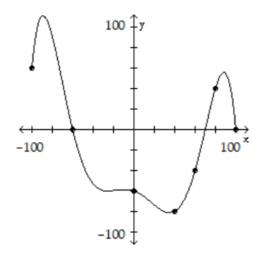
6)
$$f(x) = x + 7$$
; $g(x) = 6x^2$
Find $f - g$.

$$x + 7 - (6x^2)$$

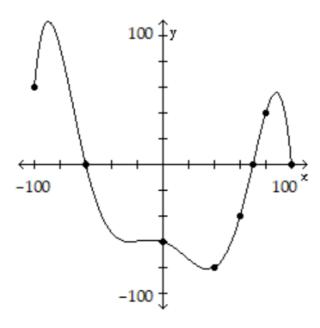
$$x+7 - 6x^2$$
 or $-6x^2 + x + 7$

domain: $(-\infty,\infty)$

7)
$$f(x) = \sqrt{x}$$
; $g(x) = 6x - 5$


Find $\frac{f}{g}$.

Domain: $x \neq 5/6$


The graph of a function f is given. Use the graph to answer the question.

8) Is f(-100) positive or negative?

Positive because f(-100) is above the x-axis

9) For what numbers x is f(x) = 0?

-60, 70, 100

Determine algebraically whether the function is even, odd, or neither.

10)
$$f(x) = \frac{x}{x^2 - 3}$$

10)
$$f(x) = \frac{x}{x^2 - 3}$$
 $\frac{-x}{(-x)^2 - 3}$ $\frac{-x}{x^2 - 3}$

$$\frac{-x}{x^2-3}$$

$$-f(x) = \frac{x^2-3}{x^2-3}$$

so f(-x) = -f(x) so function is odd

odd

11)
$$f(x) = \sqrt{x}$$

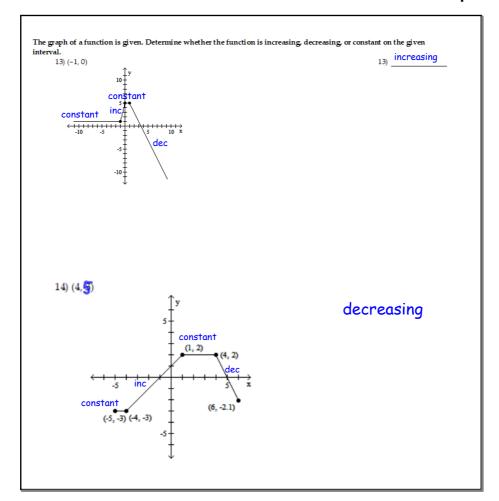
11)
$$f(x) = \sqrt{x}$$

neither

$$-f(x) = \sqrt{x}$$

12)
$$f(x) = -7x^2 - 4$$

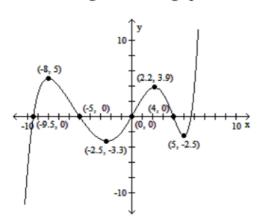
even


$$f(-x) = -7(-x)^2 - 4$$

 $-7x^2 - 4$

$$f(-x) = f(x)$$
 even

$$f(-x) = -f(x)$$
 odd function


$$f(-x) = f(x)$$

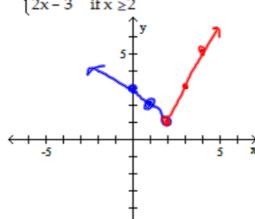
f(-x) = f(x) Even function

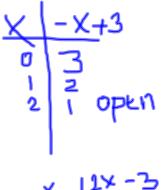
The graph of a function f is given. Use the graph to answer the question.

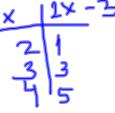
15)

Find the numbers, if any, at which f has a local maximum. What are the local maxima?

maximum points (-8,5) and (2.2, 3.9)


Maximum values and where they occur:


5 at x = -8 and 3.9 at x = 2.2


Graph the function.

16)

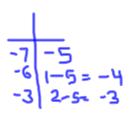
$$f(x) = \begin{cases} -x + 3 & \text{if } x < 2\\ 2x - 3 & \text{if } x \ge 2 \end{cases}$$

Write an equation that results in the indicated translation.

17) The absolute value function, shifted 9 units to the left

18) The square root function, shifted 7 units to the right

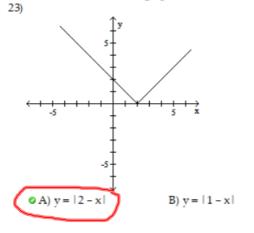
19) The squaring function, shifted 9 units upward


20) The square root function, shifted 7 units downward

Find the function.

21) Find the function that is finally graphed after the following transformations are applied to the graph of y = |x|. The graph is shifted right 3 units, stretched by a factor of 3, shifted vertically down 2 units, and finally reflected across the x-axis.

Graph the function by starting with the graph of the basic function and then using the techniques of shifting, compressing, stretching, and/or reflecting.


22) $f(x) = \sqrt{x + 7} - 5$

start with the function $y = \sqrt{x}$ then left 7 down 5

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.

Match the correct function to the graph.

(

C)
$$y = |x + 2|$$

D) y = x - 2

y is the absolute value function parent graph shifted right 2. y = |x-2|

It's not there so it not c which is a left 2

It's not D which is a line that has a y-int of -2

so it must be A or B.

B could be written as y = 1-(x-1)I which is a flip over y then shifted right 1

A could be written as y = I - (x-2)I which is a flip over y then shifted right 2

Or you could just use your calculator and see which equation matches the graph!