Transformations pages 138-147

Transformations – functions that map real numbers to real numbers

Rigid Transformations – leave the size and shape of a graph unchanged (horizontal and vertical translations, reflections)

Non-rigid transformations – distort shape of graph (horizontal and vertical stretches and shrinks)

Vertical translation shifts graph up or down

Horizontal translation shifts graph left or right.

Y = f(x-c) to right by c units.Y = f(x+c) to left by c units.Y = f(x) + c up by c units.Y = f(x) - c down by c units

Reflections -(x, y) and (x, -y) reflections of each other across the x-axis. (x, y) and (-x, y) reflections of each other across the y-axis.

Across the x-axis $y = f(x) \rightarrow y = -f(x)$

Across the y-axis $y = f(x) \rightarrow y = f(-x)$

Vertical Stretches or shrinks

 $y = c \bullet f(x)$ a stretch by a factor of c if c>1

A shrink by a factor of c if 0<c <1

Horizontal stretches or shrinks

 $y = f(\frac{x}{c})$ a stretch by a factor of c if c >1

a shrink by a factor of c if 0 < c < 1

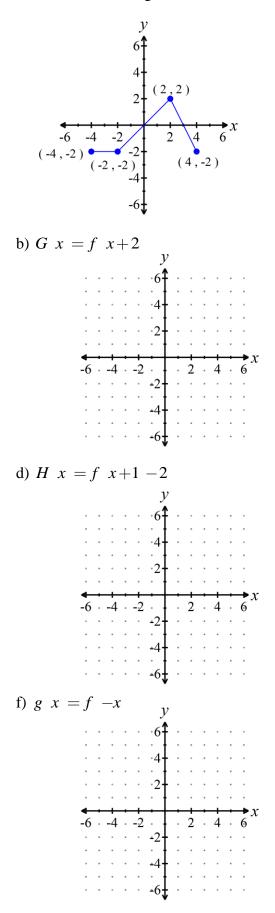
Parent Graph: y = f(x)

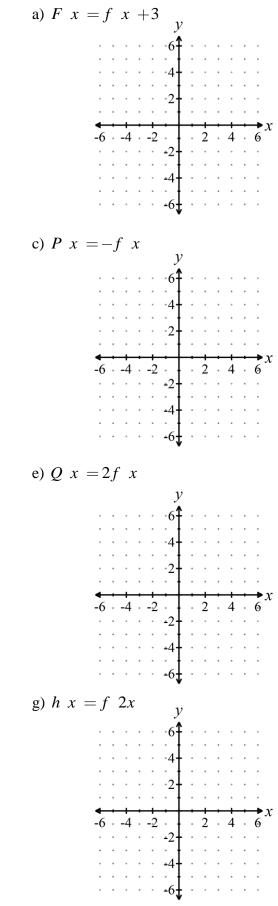
Offspring: Transformations of the parent graph.

	$f x = x^2$	$f x = \sqrt{x}$	$f x = 2^x$	Effect on Parent Graph
y = -f(x)				
$y = f\left(-x\right)$				
y = 2f(x)				
$y = \frac{1}{2} f(x)$				
y = f(2x)				
$y = f\left(\frac{1}{2}x\right)$				
y = f(x) + 2				
y = f(x) - 2				
y = f(x+2)				
y = f(x-2)				

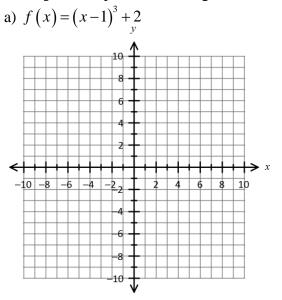
Combining transformations Transformations may be performed in succession – one after another. Pay attention to the order of the transformations....it makes a difference.

When graphing a transformed graph *based on the equation of the function*, apply transformations in the following order:

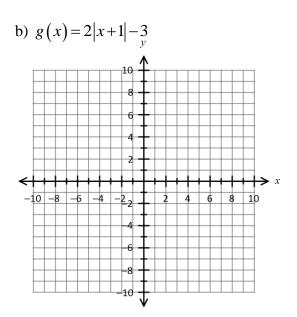

1. 2. 3.

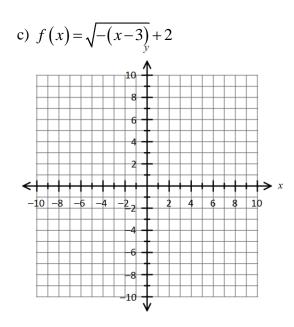

Examples: List the transformations in the appropriate order:

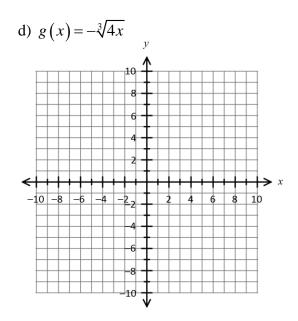
Parent graph: $y = \sqrt{x}$ a) $y = -\frac{1}{2}\sqrt{x+3}$ b) $y = 5\sqrt{-x}+3$ c) $y = \sqrt{-2x+9}$


Parent graph:
$$f(x) = |x|$$

a) $f(x) = 4|x-2|+7$
b) $f(x) = -|x+5|-3$
c) $f(x) = -|\frac{x}{3}+2|$


Example: The graph of a function f is illustrated below. Use the graph of f as the first step towards graphing each of the following functions:





Examples: Graph the following:

Example: Write the equation of the function that is graphed after the following transformations are applied, in order, to the graph of $g(x) = x^3$.

- 1. Reflect across y-axis
- 2. Shift right 4 units
- 3. Vertical compression by a factor of 1/2

Example: Write the equation of the function that is graphed after the following transformations are applied, in order, to the graph of $h = \sqrt{x}$.

- 1. Vertical stretch by a factor of 3
- 2. Move left 5 units
- 3. Reflect across the y-axis

Example: Write the equation of the function that is graphed after the following transformations are applied, in order, to the graph of f = |x|.

- 1. Horizontal compression by a factor of 1/2
- 2. Move up 6 units
- 3. Reflect across the *x*-axis

Summary of Graphing Transformations:

To Graph:	Draw the Graph of $y = f x$ and:	Functional Change to $y = f x$:
Reflection About the <i>x</i> -axis		
y = -f x	Reflect the graph of f about the x-axis.	Multiply $f x$ by -1 .
Reflection About the <i>y</i> -axis		
y = f -x	Reflect the graph of f about the y-axis.	Replace x by $-x$.
Vertical Stretches & Compressions		
	Multiply each <i>y</i> -coordinate of $y = f x$ by <i>a</i> .	
y = af x , a > 0	This stretches the graph of f vertically if $a > 1$. This compresses the graph of f vertically if	Multiply $f x$ by a .
	0 < a < 1.	
Horizontal Stretches & Compressions		
	Divide each <i>x</i> -coordinate of $y = f x$ by <i>b</i> .	
y = f bx, b > 0	This stretches the graph of f horizontally if	Replace x by bx .
, , , , , , , , , , , , , , , , , , ,	0 < b < 1. This compresses the graph of <i>f</i> horizontally if $b > 1$.	
Vertical Shifts		
y = f x + k, k > 0	Raise the graph of f by k units.	Add k to $f x$.
y = f x - k, k > 0	Lower the graph of f by k units.	Subtract k from $f x$.
Horizontal Shifts		-
$y=f \ x-h$, $h>0$	Shift the graph of f to the right by h units.	Replace x by $x - h$.
y=f~~x+h , $h>0$	Shift the graph of f to the left by h units.	Replace x by $x + h$.