Transformations - functions that map real numbers to real numbers
Rigid Transformations - leave the size and shape of a graph unchanged (horizontal and vertical translations, reflections)

Non-rigid transformations - distort shape of graph (horizontal and vertical stretches and shrinks)
Vertical translation shifts graph up or down
Horizontal translation shifts graph left or right.
$Y=f(x-c)$ to right by c units. $\quad Y=f(x+c)$ to left by c units.
$Y=f(x)+c$ up by c units. $\quad Y=f(x)-c$ down by c units
Reflections - (x,y) and (x, -y) reflections of each other across the x-axis. (x, y) and ($-\mathrm{x}, \mathrm{y}$) reflections of each other across the y-axis.

Across the x -axis $\mathrm{y}=\mathrm{f}(\mathrm{x}) \rightarrow \mathrm{y}=-\mathrm{f}(\mathrm{x})$
Across the y-axis $y=f(x) \rightarrow y=f(-x)$

Vertical Stretches or shrinks
$y=c \bullet f(x)$ a stretch by a factor of c if $c>1$
A shrink by a factor of c if $0<\mathrm{c}<1$
Horizontal stretches or shrinks
$\mathrm{y}=\mathrm{f}\left(\frac{x}{c}\right) \quad$ a stretch by a factor of c if $\mathrm{c}>1$
a shrink by a factor of c if $0<\mathrm{c}<1$

Parent Graph: $y=f(x)$
Offspring: Transformations of the parent graph.

	$f x=x^{2}$	$f x=\sqrt{x}$	$f x=2^{x}$	Effect on Parent Graph
$y=-f(x)$				
$y=f(-x)$				
$y=2 f(x)$				
$y=\frac{1}{2} f(x)$				
$y=f(2 x)$				
$y=f\left(\frac{1}{2} x\right)$				
$y=f(x)+2$				
$y=f(x)-2$				
$y=f(x+2)$				
$y=f(x-2)$				

Combining transformations Transformations may be performed in succession - one after another. Pay attention to the order of the transformations....it makes a difference.

When graphing a transformed graph based on the equation of the function, apply transformations in the following order:
1.
2.
3.

Examples: List the transformations in the appropriate order:
Parent graph: $y=\sqrt{x}$
a) $y=-\frac{1}{2} \sqrt{x+3}$
b) $y=5 \sqrt{-x}+3$
c) $y=\sqrt{-2 x+9}$

Parent graph: $f(x)=|x|$
a) $f(x)=4|x-2|+7$
b) $f(x)=-|x+5|-3$
c) $f(x)=-\left|\frac{x}{3}+2\right|$

Example: The graph of a function f is illustrated below. Use the graph of f as the first step towards graphing each of the following functions:

b) $G x=f x+2$

d) $H x=f x+1-2$

f) $g x=f-x$

a) $F x=f x+3$

c) $P x=-f x$

e) $Q x=2 f x$

g) $h x=f 2 x$

Examples: Graph the following:

b) $g(x)=2|x+1|-3$

c) $f(x)=\sqrt{-(x-3)}+2$

d) $g(x)=-\sqrt[3]{4 x}$

Example: Write the equation of the function that is graphed after the following transformations are applied, in order, to the graph of $g(x)=x^{3}$.

1. Reflect across y-axis
2. Shift right 4 units
3. Vertical compression by a factor of $1 / 2$

Example: Write the equation of the function that is graphed after the following transformations are applied, in order, to the graph of $h x=\sqrt{x}$.

1. Vertical stretch by a factor of 3
2. Move left 5 units
3. Reflect across the y-axis

Example: Write the equation of the function that is graphed after the following transformations are applied, in order, to the graph of $f x=|x|$.

1. Horizontal compression by a factor of $1 / 2$
2. Move up 6 units
3. Reflect across the x-axis

Summary of Graphing Transformations:

Vertical Shifts

$$
\begin{array}{lll}
y=f x+k, k>0 & \text { Raise the graph of } f \text { by } k \text { units. } & \text { Add } k \text { to } f x . \\
y=f x-k, k>0 & \text { Lower the graph of } f \text { by } k \text { units. } & \text { Subtract } k \text { from } f x .
\end{array}
$$

Horizontal Shifts

$y=f$	$x-h, h>0$			
$y=f$	Shift the graph of f to the right by h units.	Replace x by $x-h$.		
$y>0$		Shift the graph of f to the left by h units.		Replace x by $x+h$.
:---	:---			

