Name \qquad Period \qquad Date \qquad Score \qquad

Calculus BC Practice Exam Chapter 11

A calculator may be used on all problems, but answers should be written in exact form. Whenever possible, problems should be attempted analytically before using the calculator.

1. A curve is parametrized by $x=t^{2}+5$ and $y=e^{2 t}$.

Find $\frac{d y}{d x}$ and $\frac{d^{2} y}{d x^{2}}$ in terms of t . Express using positive exponents.

1. $\frac{d y}{d x}=$ \qquad $\frac{d^{2} y}{d x^{2}}=$
2. \qquad
$x=\frac{1}{6}(4 t+1)^{\frac{3}{2}}, y=t^{2}, 1 \leq t \leq 5$
3. Let $\boldsymbol{u}=\langle 2,-1\rangle$ and $\boldsymbol{v}=\langle-5,7\rangle$
(a) Find $3 \boldsymbol{u}+\boldsymbol{v}$
(b) Find the magnitude of $3 \boldsymbol{u}+\boldsymbol{v}$
4. An airplane, flying in the direction 35° west of north at 425 mph in still air, encounters a $55-\mathrm{mph}$ wind blowing from the west (i.e. the wind direction is due east). The airplane maintains its air speed and compass heading, but, because of the wind, acquires a new ground speed and direction. What are they?
5. Ground speed \qquad
Direction: \qquad
6. The position vector of a particle in the plane is given by $r(t)=\left\langle\ln (t+2),\left(t^{2}-2\right)\right\rangle$ for $-2 \leq t \leq 2$.
(a) Find the velocity vector
(b) Find the acceleration vector.

$$
5(\text { a) } \boldsymbol{v}(\mathrm{t})=
$$

5b). $a(\mathrm{t})=$ \qquad
6. Find the magnitude of the vector and the direction angle θ it forms with the positive \mathbf{x}-axis. $\langle-\sqrt{2}, \sqrt{2}\rangle$
6.
7. Graph the polar curve given by $r=1+2 \cos 2 \theta$
7.

8. Suppose a polar graph is symmetric about the x -axis and contains the point $\left(4, \frac{\pi}{6}\right)$. Which of the following identify another point that must be on the graph?
I. $\left(4, \frac{-\pi}{6}\right)$
II. $\left(4, \frac{5 \pi}{6}\right)$
III. $\left(-4, \frac{5 \pi}{6}\right)$
(A) I only
(B) II only
(C) III only
(D) I and II
(E) I and III
8.
9. Replace the polar equation $r=\sec ^{2} \theta$ by an equivalent Cartesian equation.
9.
10. Find the slope of the polar curve $r=-2 \cos 3 \theta$ at $\theta=\frac{\pi}{6}$ and $\theta=\frac{\pi}{3}$. Confirm answers on your calculator.
10. $\operatorname{At} \frac{\pi}{6}$

$$
A t \frac{\pi}{3}
$$

11. Find the area of the region enclosed by $r=5-2 \cos \theta$
12.
13. Find the area of the region shared by the circle $r=2$ and the cardioid $r=2(1-\cos \theta)$.
14.
