Name _____

Period ____ Date ____ Score _____

Calculus BC Practice Exam Chapter 11

A calculator may be used on all problems, but answers should be written in exact form. Whenever possible, problems should be attempted analytically before using the calculator.

1. A curve is parametrized by $x = t^2 + 5$ and $y = e^{2t}$.

Find $\frac{dy}{dx}$ and $\frac{d^2y}{dx^2}$ in terms of t. Express using positive exponents.

1. $\frac{dy}{dx} =$ _____

d^2y	_			
dx^2	_	 		

2. Find the length of the curve parametrized by

2.____

 $x = \frac{1}{6} (4t+1)^{\frac{3}{2}}, y = t^2, 1 \le t \le 5$

- 3. Let $u = \langle 2, -1 \rangle$ and $v = \langle -5, 7 \rangle$ 3. (a) ______

 (a) Find 3u + v (b) ______
 - (b) Find the magnitude of 3u + v

4. An airplane, flying in the direction 35° west of north at 425 mph in still air, encounters a 55-mph wind blowing from the west (i.e. the wind direction is due east). The airplane maintains its air speed and compass heading, but, because of the wind, acquires a new ground speed and direction. What are they?

4. Ground speed _____

Direction:

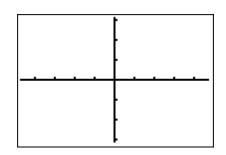
5. The position vector of a particle in the plane is given by

$$r(t) = \langle \ln(t+2), (t^2-2) \rangle$$
 for $-2 \le t \le 2$.

- (a) Find the velocity vector
- (b) Find the acceleration vector.

5(a) v(t) = _____

5b). *a*(t)=_____


6. Find the magnitude of the vector and the direction angle θ it forms with the positive x-axis.

 $\langle -\sqrt{2} \hspace{0.1 cm}$, $\sqrt{2} \rangle$

6. _____

7. Graph the polar curve given by $r = 1 + 2\cos 2\theta$

7.

8. Suppose a polar graph is symmetric about the x-axis and contains the point $\left(4, \frac{\pi}{6}\right)$. Which of the following identify another point that must be on the graph?

I.
$$\left(4, \frac{-\pi}{6}\right)$$
 II. $\left(4, \frac{5\pi}{6}\right)$ III. $\left(-4, \frac{5\pi}{6}\right)$
(A) I only (B) II only (C) III only (D) I and II (E) I and III
8.

9. Replace the polar equation $r = \sec^2 \theta$ by an equivalent Cartesian equation.

9._____

10. Find the slope of the polar curve $r = -2\cos 3\theta$ at $\theta = \frac{\pi}{6}$ and $\theta = \frac{\pi}{3}$. Confirm answers on your calculator.

11. Find the area of the region enclosed by $r = 5 - 2\cos\theta$ **11.**

12. Find the area of the region shared by the circle r = 2 and the cardioid $r = 2(1 - \cos \theta)$.

12._____