\qquad Date \qquad Period \qquad Score \qquad

Calculus Chapter 10 Practice Exam

1. Write the first four terms of the series $\quad \sum_{n=2}^{\infty} \frac{x^{n}}{3 n-1}$
2. Tell whether the series $\sum_{n=1}^{\infty} 4\left(\frac{2}{5}\right)^{n}$ converges or diverges. If it converges, find the sum.
3. Given that $\mathbf{1}-\boldsymbol{x}+\boldsymbol{x}^{2}+\cdots+(-\boldsymbol{x})^{n}$ is a power series representation for $\frac{\mathbf{1}}{\mathbf{1}+\boldsymbol{x}}$, find a power series representation for $\frac{x^{3}}{1+x^{2}}$.
4. Find the Taylor polynomial of order 3 generated by $f(x)=\sin (2 x)$ at $x=\frac{\pi}{4}$
5. Let f be a function that has derivatives of all orders for all real numbers. Assume $f(0)=5$, $f^{\prime}(0)=-3, f^{\prime \prime}(0)=8, f^{\prime \prime \prime}(0)=24$. Write the third order Taylor polynomial for f at $\mathrm{x}=0$ and use it to approximate $f(0.4)$
6. The Maclaurin series for $f(x)$ is $\mathbf{1}+\mathbf{2 x}+\frac{3 x^{2}}{2}+\frac{4 x^{3}}{6}+\cdots+\frac{(n+1) x^{n}}{n!}+\cdots$
a. Find $f^{\prime \prime}(0)$.
b. Let $\mathrm{g}(\mathrm{x})=x f^{\prime}(x)$. Write the Maclaurin series for $\mathrm{g}(\mathrm{x})$.
c. Let $h(x)=\int_{0}^{x} f(t) d t$. Write the Maclaurin series for $\mathrm{h}(\mathrm{x})$.
7. Find the Taylor polynomial of order 4 for $f(x)=\ln \left(1-x^{2}\right)$ at $x=0$ and use it to approximate $\mathrm{f}(0.3)$
8. The polynomial $1+7 x+21 x^{2}$ is used to approximate $f(x)=(1+x)^{7}$ on the interval $-0.01 \leq x \leq 0.01$. Use the Remainder Estimation Theorem to estimate the maximum absolute error.
9. Determine the convergence or divergence of each series. Identify the test(s) you use.
a. $\sum_{n=2}^{\infty} \frac{(2 n)!}{(n-1) 3^{n}}$
b. $\sum_{n=1}^{\infty} \frac{\left(n^{2}+3 n-4\right)}{n!}$
c. $\sum_{n=1}^{\infty}\left(1+\frac{1}{2 n}\right)^{3 n}$
10. Find the radius of convergence of each power series.
a. $\sum_{n=0}^{\infty} \frac{(5 x)^{n}}{3^{n}}$
b. $\sum_{n=1}^{\infty} \frac{n^{2}(2 x-3)^{n}}{6^{n}}$
11. Find the interval of convergence of the series $\sum_{n=0}^{\infty} \frac{(4 x-3)^{3 n}}{8^{n}}$ and within this interval, the sum of the series as a function of x.
12. Find the interval of convergence of the series $\sum_{n=1}^{\infty} \frac{3^{n}(x-2)^{n}}{\sqrt{n+2} \cdot 2^{n}}$
