Chapter 7 Calculus Practice Exam

1. Use the Fundamental Theorem of Calculus to evaluate $\int e^{x^2 + \sin(x)} dx$

A. $\int_0^x (t^2 + \sin t) dt + C$ C. $(2x + \cos x)e^{x^2 + \sin(x)} + C$ E. $\int_0^x (2t + \cos t)e^{t^2 + \sin(t)} dt + C$ B. $\int_x^0 e^{t^2 + \sin(t)} dt + C$

2. Evaluate $\int e^{3x} - 4\cos x \, dx$

3. Solve the initial value problem. $\frac{dy}{dx} = 5x^2 - 7, \ y(0) = 1$

4. Construct a slope field for the differential equation through the twelve lattice points shown in the graph.

$$\frac{dy}{dx} = x + y$$

1.

2.

3._____

- 6. Evaluate the definite integral by making a u-substitution and integrating from u(a) to u(b) $\int_{0}^{\frac{\pi}{2}} (e^{\sin x} \cos x) dx.$ 6.
- 7. Use separation of variables to solve the initial value problem. $\frac{dy}{dx} = \frac{\cos x}{3y^2} ; y(\pi) = 5$

7._____

8._____

8. Use integration by parts to evaluate $\int \cos^{-1} 2x \, dx$

9. Evaluate $\int (4x^2 - 3x)e^x dx$

9._____

10. Evaluate $\int 2\cos(\ln t) dt$ by using a substitution **prior** to integration by parts.

10._____

11. Find the solution of the differential equation $\frac{dy}{dt} = ky$, k is a constant, that satisfies the given conditions. k = 1.5, y(0) = 100. Show your work.

11._____

12. Find the partial fraction decomposition. $\frac{2x+16}{x^2+x-6}$

12. _____

13. Evaluate the integral.

$$\int \frac{2x+16}{x^2+x-6} dx$$

13._____

- **14**. A population of wild horses is represented by the logistic differential equation $\frac{dP}{dt} = 0.08P 0.00004P^2$, where t is measured in years.
- a.) Find k and the carrying capacity for the population.
- b.) The initial population is P(0) = 10 horses. Find a formula for the population in terms of t.

14a. k=	
carrying capacity=	
14b	
14c	

c.) When is the size of the population growing the fastest?

15. Suppose Euler's method, with increment dx, is used to numerically solve the differential equation $\frac{dy}{dx} = f(x, y)$ with initial condition (x_0, y_0) lies on the solution curve. Let (x_1, y_1) , (x_2, y_2) , and so on denote the points generated by Euler's method, and let y = y(x) denote the exact solution to the initial value problem. Which of the following must be true?

I. $y_3 = y(x_3)$ II. $y_2 = y_1 + f(x_1, y_1) dx$ III. $x_3 = x_0 + 3dx$

A. II only B. I and II C. I and III D. II and III E. I, II, and III

15._____

16. Use Euler's method to numerically solve the initial value problem $y' = e^x - 10y$, y(2) = 3.5. Using dx = 0.1 find y (2.3). Show all steps leading to your answer and round y-values to the nearest 0.001.

16. _____