Chapter 7 Calculus Practice Exam

1. Use the Fundamental Theorem of Calculus to evaluate $\int e^{x^{2}+\sin (x)} d x$
A. $\int_{0}^{x}\left(t^{2}+\sin t\right) d t+C$
B. $\int_{x}^{0} e^{t^{2}+\sin (t)} d t+C$
C. $(2 \mathrm{x}+\cos x) e^{x^{2}+\sin (x)}+C$
D. $\int_{0}^{x} e^{t^{2}+\sin (t)} d t+C$
E. $\int_{0}^{x}(2 t+\cos t) e^{t^{2}+\sin (t)} d t+C$
2. \qquad
3. Evaluate $\int e^{3 x}-4 \cos x d x$
4. Solve the initial value problem.

$$
\frac{d y}{d x}=5 x^{2}-7, y(0)=1
$$

3.
4. \qquad
5. Construct a slope field for the differential equation through the twelve lattice points shown in the graph. $\frac{d y}{d x}=x+y$
6.

[-2,2] by [-2,3]
5. Use substitution to evaluate $\int \frac{(\ln x)^{5} d x}{x}$
5. \qquad
6. Evaluate the definite integral by making a u-substitution and integrating from $u(a)$ to $u(b)$

$$
\int_{0}^{\frac{\pi}{2}}\left(e^{\sin x} \cos x\right) d x
$$

6. \qquad
7.

$$
\frac{d y}{d x}=\frac{\cos x}{3 y^{2}} ; y(\pi)=5
$$

\qquad
8. Use integration by parts to evaluate $\int \cos ^{-1} 2 x d x$
8. \qquad
9. Evaluate $\int\left(4 x^{2}-3 x\right) e^{x} d x$
\qquad
10. Evaluate $\int 2 \cos (\ln t) d \boldsymbol{t}$ by using a substitution prior to integration by parts.
10. \qquad
11. Find the solution of the differential equation $\frac{d y}{d t}=k y, \mathrm{k}$ is a constant, that satisfies the given conditions. $\mathrm{k}=1.5, \mathrm{y}(0)=100$. Show your work.
11. \qquad
12. Find the partial fraction decomposition.
$\frac{2 x+16}{x^{2}+x-6}$
12.
13. Evaluate the integral.
$\int \frac{2 x+16}{x^{2}+x-6} d x$
13.
14. A population of wild horses is represented by the logistic differential equation $\frac{d P}{d t}=0.08 P-0.00004 P^{2}$, where t is measured in years.
a.) Find k and the carrying capacity for the population.
b.) The initial population is $\mathrm{P}(0)=10$ horses. Find a formula for the population in terms of t.
c.) When is the size of the population growing the fastest?

14a. $\mathrm{k}=$
\qquad carrying capacity= 14b. \qquad
14c. \qquad
15. Suppose Euler's method, with increment dx , is used to numerically solve the differential equation $\frac{\boldsymbol{d} \boldsymbol{y}}{\boldsymbol{d} \boldsymbol{x}}=\boldsymbol{f}(\boldsymbol{x}, \boldsymbol{y})$ with initial condition $\left(x_{0}, y_{0}\right)$ lies on the solution curve. Let $\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right)$, and so on denote the points generated by Euler's method, and let $y=y(x)$ denote the exact solution to the initial value problem. Which of the following must be true?
I. $y_{3}=y\left(x_{3}\right)$
II. $y_{2}=y_{1}+f\left(x_{1}, y_{1}\right) d x$
III. $x_{3}=x_{0}+3 d x$
A. II only
B. I and II
C. I and III
D. II and III
E. I, II, and III
15. \qquad
16. Use Euler's method to numerically solve the initial value problem $y^{\prime}=e^{x}-10 y, y(2)=3.5$. Using $\mathrm{dx}=0.1$ find y (2.3). Show all steps leading to your answer and round y -values to the nearest 0.001 .
16. \qquad

