Chapter 6 Calculus Practice Exam

1. Consider the region enclosed between the graph of $f(x)=x^{2}-\ln x$ and the x-axis for $1 \leq x \leq 5$.
a) Find the MRAM $_{4}$, and the area estimate obtained using the 4 midpoint rectangles.

1a)
1b) \qquad
2. A solid is formed by revolving the curve $y=x^{\frac{2}{3}}+1,0 \leq x \leq 2.5$ about the x -axis.

Estimate the volume of the solid by partitioning [$0,2.5$] into five subintervals of equal length, slicing the solid with planes perpendicular to the x -axis at the subintervals' left endpoints, and constructing cylinders of height 0.5 based on cross sections at these points, as shown at the right.

2.
3. Use an area to evaluate $\int_{a}^{a^{2}}(3 x) d x$, where $a>1$.
3. \qquad
4. Use fnint to evaluate $\int_{3}^{7.2} \frac{e^{x}-\sin (x)}{x} d x$.
4. \qquad
5. Suppose that f and g are continuous functions and that
5. \qquad $\int_{3}^{5} f(x) d x=7, \int_{3}^{5} g(x) d x=2$, and $\int_{0}^{5} g(x) d x=4$
Which of the following must be true?
I. $\int_{0}^{3} g(x) d x=2$
II. $\int_{3}^{5} f(x) g(x) d x=14$
III. $\int_{3}^{5}[f(x)-g(x)] d x=5$
A. I and II
B. I and III
C. II and III
D. III only
E. I, II, and III
6. Evaluate $\int_{2}^{7}(4 x-10) d x$.
6. \qquad
7. Evaluate $\int_{0}^{\frac{\pi}{3}} \sec (x) \tan (x) d x \quad$ using Part 2 of the Fundamental Theorem of Calculus.
7. \qquad
8. (a) Graph the function $y=0.2 x^{2}-0.8 x-1$ over the interval $[0,6]$.
(b) Integrate $y=0.2 x^{2}-0.8 x-1$ over $[0,6]$.
(c) Find the area of the region between the graph in part (a) and the x -axis

$[0,6]$ by $[-3,3]$

8 b.
8c. \qquad
9. Let $\mathrm{f}(\mathrm{x})=4-3 \mathrm{x}$.
a) Find $\frac{d}{d x} \int_{-1}^{3 x^{2}} f(t) d t$

9a. \qquad
b) Find $\frac{d}{d x} \int_{-1}^{x} f(t) d t$
10. A particle moves along a coordinate axis. Its position at time $\mathrm{t}(\mathrm{sec})$ is $s(t)=\int_{0}^{t} f(x) d x c m$, where $f(\mathrm{x})$ is the function whose graph is shown.

a) What is the particle's position at $t=0$?
b) What is the particle's position at $\mathrm{t}=3$?
c) What is the particle's velocity at $\mathrm{t}=5$?
d) Approximately when is the acceleration zero?
e) At what time during the first 7 sec does s have its largest value?

10a. \qquad
10b. \qquad
10c. \qquad
10d. \qquad
10e. \qquad
11. Use the Trapezoidal Rule with $\mathrm{n}=4$ to approximate the
11. \qquad value of $\int_{0}^{2}\left(x^{2}-x\right) d x$.
12. The function f is continuous on the closed interval $[1,7]$ and has the values that are given in the table below.
Use the subintervals $[1,4],[4,6]$, and $[6,7]$, what is the trapezoidal approximation of $\int_{1}^{7} f(x) d x$?

x	1	4	6	7
$f(x)$	10	30	40	20

12. \qquad
