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9.1 _notes calculus

Sequences

A sequence {an} 1s a list of numbers written in an explicit order.
fag}=1{a; a> as __an_} apis the first term, az 1s the second term
and so forth. A sequence never ends. The numbers m the list
are called the terms of the sequence and a, 1s the nth term. A

sequence can be finite or nfinite.

Examplel: Defining a Sequence Explicitly
Find the first six terms and the 100™ term of the sequence {an}
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The sequence in example one was defined explicitly.

A second way of defining a sequence 1s recursively which
assigns a value to the first (or the first few) term(s) and specifies
the nth term by a formula or equation that involves one or more
of the terms preceding it.

Example 2: Defining a Sequence Recursively
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Definition Arithmetic Sequence

A sequence {a,} ts an arithmetic sequence
in the form
ta,atd,at+2d,....a+(n—
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. for some constant d. The
number d i1s the common difference. FEach term m an

arithmetic sequence can be obtamned f,u_d.\ trom 1ts
preceding term by adding d:Yay=ay:1+ df foralln = 2.

it 1t can be written
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Definition Geometric Sequence
A sequence {ap} 1s a geometric sequence if it can be written in

th‘e t(glm {"-2 Rnz O Y "
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ta. ar. g mla-r(“'l l ... for some constant r. The pumber r 1s

’ """"" - . -
the common ratio. Each term in a geometric sequence can be
obtained recursively from its preceding term by multiplying by
r:jap=ap;r ‘foralln 2.
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Example 6:
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Definition: Limit
Let L. be a real number. The sequence {a,} has limit L. as n
approaches « if, given any positive number €, there 1s a
positive number M such that for all n = M we have
la, — L] < €
We write lim,, o, a, = L and say that the sequence converges
to L. Sequences that do not have limits diverge.
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Theorem 1: Properties of Limits

[t L and M are real numbers and lim,,_,, a,, = L and

limy,_ e by, = M . then

Sum Rule: limy,_(a, + b,) = L + MBtference
D'[fﬁ[é?ﬁmn_,m(an —b,)=L—-—M

Product Rule: lim,,_,(a, b,,) = LM

Constant Multiple Rule: lim,, (¢ - a,,) = c-L

. . L
Quotient Rule: lim,,_ ¢, (%) =—,M=0
bp) M
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Example 9
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Theorem 2: The Sandwich Theorem for Sequences
If lim, e a, =limy,_.e, ¢, =L and if there 1s an mteger N for
which a, < b, < ¢, forall

n > N, then lim, e b, =L

Example 10 Using the Sandwich Theorem
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Theorem 3 Absolute Value Theorem
Consider the sequence {a,}. If lim,_|a,| = 0. then
lim, . a, =0

[£ +he abselote valve sequence
Convevaes to O ,thanthe origina| sequence
also Cenverges b O.

10



	Page 1
	Page 2
	Page 3
	Page 4
	Page 5
	Page 6
	Page 7
	Page 8
	Page 9
	Page 10

