5.3 notes calculus

Connecting f' and f" with the graph of f

We already know that when:

f'(c) = 0 c is a possible max or min

f'(c) > 0 at c, f is increasing

 $f'(c) \le 0$ at c, f is decreasing

Look at Figure 5.18

Check out: First Derivative Test for Local Extrema

If f' changes sign from positive to negative at c then f has a local maximum value at c.

If f' changes sign from negative to positive at c then f has a local minimum value at c.

If f' does not change sign at c, then f has no local extreme value at c.

At a left endpoint a: If f' < 0 for x > a, then f has a local maximum value at a. If f' > 0 for x > a, then f has a local minimum value at a.

At a right endpoint b: If $f' \le 0$ for $x \le b$, then f has a local minimum value at a. If $f' \ge 0$ for $x \le b$, then f has a local maximum value at a.

Look at figure 5.21

There is a nice definition of concavity.

Concave up when y' is increasing Concave down when y' is decreasing

We are really talking about how y' is changing. Concave up when y'' > 0 when y' is positive. Concave down when y'' < 0 when y' is reg. Changes concavity when y'' = 0

Now look at page 212 figure 5.22 and 5.23

Points of Inflection

A **point of inflection** is a point where the graph of a function has a tangent line and where the concavity changes.

Critical Points

f'(c) Does not exist (in the function this is at a corner, cusp, jump, not if the point is a vertical tangent)

f'(c) = 0 possible max or min

Remember that max or min can occur at an endpoint of the interval.

f''(c) = 0 point of inflection. Changes from concave up to down or down to up; but it must have a tangent line.

It is good to note that when a function is increasing (concave up) the tangent line is below the curve. When it is concave down, the tangent line is above the curve.

Second Derivative Test for Local Extrema

If f'(c) = 0 and $f''(c) \le 0$ then f has a local maximum at x = cIf f'(c) = 0 and f''(c) > 0 then f has a local minimum at x = c

Example 8

$$f'(x) = 4x^3 - 12x^2$$
 $O = 4x^2(x-3)$
 $f'(x) = 4x^3$

inc (3, 10)

 $f'(x) = 4x^3$
 $f'(x) = 4x^$

$$f''(x) = 12x^{2} - 24x \quad (-\frac{\omega}{\omega}, 0) \quad (0,2) \quad \frac{1}{4}(2,2)$$

$$O = 12x(x-2) \quad f \quad \text{cup} \quad \text{cd} \quad \text{cup}$$

Exploration 1 page 217

$$f \omega = \frac{4 \times^{3+1}}{(3+1)} - \frac{12 \times^{2+1}}{(2+1)}$$

$$f(x) = X_{4} - 4x_{3} + 4$$

vertical shift

Learn about functions from Derivatives.

Read the Table on pg 217

Exploration 2 page 218

a) abs min (4,1)

abs max at x=0 b) pt of inflection at x=2

51. \underline{f} is continuous on [0,3] and satisfies the following. Find the absolute extrema of f and where they occur; find any points of inflection, sketch a possible graph of f.

X	0	1	2	3
f	0	2	0	-2
f'	3	0	does not exist	-3
f"	0	-1	does not exist	0

X	0 <x<1< th=""><th>1<x<2< th=""><th>2<x<3< th=""></x<3<></th></x<2<></th></x<1<>	1 <x<2< th=""><th>2<x<3< th=""></x<3<></th></x<2<>	2 <x<3< th=""></x<3<>
f	+	+	-
f'	+	-	-
f"	_	-	-

