4.2 notes calculus

Implicit Differentiation

Look at figure 4.7

What is the equation of this function? $\chi^3 + y^3 - 9\chi y = 0$ Does this graph have tangents? How can we differentiate this function? No CLUE YET: On this particular example we would have to break it into three function pieces. These 3 pieces are not explicitly stated, they are defined implicitly. Therefore the process by which we find the derivative of such a function is called **Implicit**

differentiation.

Implicit differentiation is used when y cannot be written explicitly as a function of x.

What does implicit and explicit mean? 4=

SOLVE for y don't knowwhat gis interms of x

Implicit differentiation – treat y as a differentiable function of xand apply the rules of differentiation.

Let's start with a surprisingly simple concept. What is the derivative of y with respect to x? Answer: The derivative of y is dy/dx. Example: Find $\frac{dy}{dx}$ if $y^2 = x$ $\frac{dy}{dx} = \frac{1}{2y}$ dy/dx does not always have to be a function of x. Sometimes it is useful to have it be a function of y. Let's read the paragraph under Example 1. $3x^2 + 3(y)^2 - \frac{dy}{dx} - 9[x \frac{d}{dx}(y) + y(1)] = 0$ 3x2+3y2 = -9[x2+y]=1(y)32 3×2+3424 -9×3-94=0 342 dy -9x dy =-3x2+94

Implicit Differentiation Process:

- 1. Differentiate both sides of the equation with respect to x.
- 2. Collect the terms with dy/dx on one side of the equation.
- 3. Factor out dy/dx.
- 4. Solve for dy/dx.

Examples:

Find
$$\frac{dy}{dx} \quad \text{if} \quad 2x^3 - 3(y)^2 = 8$$

$$6x^2 - 6(y) \cdot \frac{dy}{dx} = 0$$

$$6x^2 = 6y \frac{dy}{dx} \quad \frac{-6y \frac{dy}{dx}}{-6y} = \frac{-6x^2}{-6y}$$

$$\frac{6x^2}{6y} = \frac{dy}{dx} \quad \frac{dy}{dx} = \frac{x^2}{-6y}$$

$$\frac{d}{dx} \quad \text{if} \quad x^2 + xy - y^2 = 1$$

$$x^2 + x(y) - (y)^2 = 1$$

$$2x + \left[\frac{x \frac{dy}{dx}}{dx} + y(1) \right] - 2(y) \frac{dy}{dx} = 0$$

$$2x + x \frac{dy}{dx} + y - 2y \frac{dy}{dx} = 0$$

$$\frac{dy}{dx} \left(x - 2y \right) = -2x - y$$

$$\frac{dy}{dx} = \frac{-2x - y}{x - 2y}$$

$$\frac{dy}{dx} = \frac{-2x - y}{-(-x + 2y)}$$

$$\frac{-(2x + y)}{2y - x}$$

#18. Find
$$\frac{d}{dx}$$
 if $x^2 + y^2 = 25$

Find the lines that are (a) tangent and (b) normal to the curve at the given point. (3,-4)

$$x^{2}+4y^{2} = 25$$
 $2x+2(y) = 0$
 $2y = -2x$
 $\frac{dy}{dx} = \frac{-2x}{2y}$
 $\frac{dy}{dx} = \frac{-x}{y}$

EQ of tangent line

$$y-y_1 = m(x-x_1)$$

$$y+4 = \frac{3}{4}(x-3)$$

Eq of Normal line
$$(y+4=-\frac{4}{3}(x-3))$$

We can also find higher order derivatives implicitly.

Example:
$$Find \frac{d^2y}{dx^2}$$
 of $2x^3 - 3y^2 = 8$

$$dy = -6x^2 - 3 \cdot 2y^3 \cdot \frac{dy}{dx} = 0$$

$$-6y \frac{dy}{dx} = -6x^2 - 6y^2 - 6y^$$

Rational Powers of Differentiable Functions: We can apply the power rule,

As we have shown before: $\frac{d}{dx}\sqrt{x} = \frac{1}{2\sqrt{x}}$

$$\sqrt{x} = x^{\frac{1}{2}}$$

$$\frac{d}{dx}x^{\frac{1}{2}} \Rightarrow \frac{1}{2}x^{\frac{-1}{2}} = \frac{1}{2x^{\frac{1}{2}}} = \frac{1}{2\sqrt{x}}$$

Something more challenging?!

Find
$$\frac{dy}{dx}$$
 if $y = (2x-3)^{\frac{2}{3}}$

$$\frac{dy}{dx} = \frac{2}{3} (2x-3)^{\frac{2}{3}}$$

$$\frac{2}{3\sqrt[3]{2x-3}}$$

Find
$$\frac{dy}{dx}$$
 if $y = \sqrt[5]{\sin(x)}$

$$y = (\sin x)^{\frac{1}{5}}$$

$$\frac{dy}{dx} = \frac{1}{5}(\sin x)^{\frac{1}{5}}$$

$$\frac{1}{5\sqrt[5]{\sin x}}$$
or $\frac{1}{5\sqrt[5]{\sin^2 x}}$

Exploration 1

$$\chi^{2} + (-2xy) + (y)^{2} = 4$$

$$0 2x + (-2x \cdot 1(y) \cdot \frac{1}{3x}) + y(-2) + 2(y) \cdot \frac{1}{3x} = 0$$

$$2x + -2x \frac{1}{3x} + -2y + 2y \frac{1}{3x} = 0$$

$$-2x \frac{1}{3x} + 2y \frac{1}{3x} = -2x + 2y$$

$$\frac{1}{3x} (-2x + 2y) = -2x + 2y$$

$$\frac{1}{3x} = \frac{1}{3x} = \frac{1}{3x} = 1$$

$$y = x + C$$

$$3 + x = 0$$

3 Let
$$x=0$$

$$X^{2}-2\times y+y^{2}=4$$

$$0^{2}-2(0)y+y^{2}=4$$

$$y=\pm 2$$

$$2=0+c$$

$$2=c$$

$$y=x+c$$

$$y=x+c$$

$$y=\pm 2$$

$$y=\pm 2$$

$$y=\pm 2$$

$$y=x+c$$

$$(x^{2}-2xy+y^{2}=4)$$
 $(x-y)(x-y)=4$
 $(x-y)^{2}=4$
 $(x-y)^{2}=4$
 $x-y=\pm 2$
 $x-y=2$
 $x-2=y$
 $y=x+2$