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4.1 notes cale

Chain Rule

We know how to differentiate lots of functions,
polynomials, trig functions, rational functions, ete., but
we have not done derivatives of composites.

How do we differentiate y=sin (x*+x)?

We actually use a new rule for differentiation which is the

most widely used rule in calculus. the chain_rule.

Suppose we make an easy composite function. y= 3(x>+4x)
This could be made up of y=3(u) and u =x*+4x so

v =3x3+12x 5(!)'-’4 “(ﬂ) xm

y'=Gx+12
Q=6x+12 Q=3 ﬁ=2x+4
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Here is another example:
v=9x' + 6x2

y
21 ?‘ +6"'~{,

y=u? and ut Vaut i
dy/du =2u and du'dx = 6X p2p 2% |
soy'=2(3x*+ 1)- 6x = (6x* +2) - 6x=30x" +12x  Does this
match with the derivative of 9x* + 6x2 + 1?

36>+ 12x
How can we write this as a rule that will be easier to work with?
s it turns out. the previous rule is actually the notation that

2u- box
Ti=2u - bx
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Leibniz worked out, but we generally use a method that Newton
developed that relates to typical composite notation.

The Chain Rule:
If f is differentiable at the point u = g(x) and g is differentiable at
¢ then the composite function
o 2y} fiaen - 20
2 Fed_= £1qe))- 9T
dv _dv du

In Leibniz notation if v = f{u) and v = g(x). then r = % dr

where dv/du is evaluated atu = g(x).

words “outside” and “insi

Remember this using tl
The derivative of the outside, leave the inside alone. times the

1 derivative of the inside.
CHAIN RULE
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If y = sin_(x?+x)
f(x) =sin(x) “outside” and g(x)=x>x “inside” Example Differentiate: sin(2x+1)
Then y' = derivative of the outside function evaluated at the
inside function left alone times the derivative of the inside

Outside derivative cos (2x + 1)
v =sin (x>+x Inside derivative 2

Outside times inside: 2cos(2x + 1
V' = cos(x*x) (Zx + 1@ (2%\605 (x-"*x\ Ze0s( )
Sl - 5320

Another example:

3y = cos‘ 3-x)
. . d . . , .
outside —)—sm(\/g - x) Emstde -3 y'==3 sm(\/g -x)

v=2(3x-35) outside: v=2u inside; u=3x-5 ~Sin (V3 x .1;'_5
@x-10 $2-2 g2-3 in ( : )
V=2 u'=3 v of u times v’ = 2(3) = 6. “o! ‘“\(ﬁ%

Does this match with the derivative of 6x — 107 (g

After some practice, the rule becomes pretty easy to use.

We can also apply the chain rule repeatedly

Consider: ?
v = sin*(3x) = (sin(3x))*" 2 Ksin(3x))*-cos(3x)- 3 = 128in*(3x)c0s(3x)
_(sm(l"). -

7o 4 (s0) .J,}@;b Example 3
£k e oot

5'-. in3x)- cos(®) «3 k?a .
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#22 yv=(1+cos2x)? de
2(1 + cos2x) (-sin 2X) -2 = -4 (sin 2x) (_1+cos 2X)

=2t sin (£ +1)

d
1(l+cos(1ﬂ)l T dx (l mcu\
; O + 75 Cos(2)
2(14Cos @) + ~3in (3 & )

o —Sin(2)- 2.
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Slopes of Parametrized Curves
Parametric curves still have tangents so they should have
derivatives. Using the chain rule we can find
dy/dx_parametrically.

dv  dvldt
It all three derivatives exist and dx/dt # 0, then E = A/ dt

x@ 4l sster 4 44
{33 9 * dy 37'.3‘-&

om‘ % o .
L] ecause powers are used so often and polynomials are so easy to
=& B P 1 50 often and polynomial vt
differentiate. we have what's called ““The Power Chain Rule™.
L4 & It is easy to see by examples.
wloesint Y= st Ot A p
ple: sayxfsmj v = cos t A
- a ‘h —gnt -mt Example (s"' (”)) o \
y= smiw\) v=(2-2%) u
1 ind_the slope of the tangent at t = n/4 ¥y nn
Find the equation of the no e att=m/4 rﬁm (7\» 3eos(3x) 408~ 29° (3x-2)
‘ quation of the normal lin : 2u - dwdx 403 - du/dx
- - t l Y If we think of these as u"— d/dx = nu™! -du/dx
= e ¥ &) tanx = 5 4

& (o)) R
~tan (%) ; 2(sm3x )+ Cos Gy
‘;‘;\ﬂv\ )
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#23
=(1+cos?7x)°3

Reminder, we always use 6 measured in radians. All the
3 LL + cog2 7X) 2(2008 7X)(—Sin7X)7 touuulas onJ\ W mk for radians.  Yes it can be done in degrees.

-42 (sin 7x) (cos 7x) (1 +cos? 7x)?
y= (1+ cos )
Lnsuse
¥ = 3(|+cni‘1n) |+(cob-$)
g‘: 3(l+cos ™y . (o+2(cosTx) ). I\

3 » 3(1rcos (2 “h‘b) (=sin (33)- *c“‘)
= 3(1sead by Q) Gun @iy F

(‘4‘2 (14 coS 7x)'(costh¢))sm0)0
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