4.1 notes calc

Chain Rule

We know how to differentiate lots of functions, polynomials, trig functions, rational functions, etc., but we have not done derivatives of composites.

How do we <u>differentiate</u> $y=\sin(x^2+x)$?

We actually use a new rule for differentiation which is the *most widely used rule in calculus*, the *chain rule*.

Suppose we make an easy composite function. $y = 3(x^2+4x)$ This could be made up of y=3(u) and $u = x^2+4x$ so $y = 3x^2+12x$ y = 6x+12 $\frac{dy}{dx} = 6x+12$ $\frac{dy}{dx} = \frac{dy}{du} \cdot \frac{du}{dx}$ $\frac{dy}{dx} = \frac{dy}{du} \cdot \frac{du}{dx}$ $\frac{dy}{dx} = \frac{dy}{dx} \cdot \frac{du}{dx}$

Here is another example: $y = 9x^4 + 6x^2 + 1$ $y = u^2$ and $u = 3x^2 + 1$ $y = u^2$ and $u = 3x^2 + 1$ $y = u^2$ and $u = 3x^2 + 1$ $y = u^2$ and $u = 3x^2 + 1$ $y = u^2$ and $u = 3x^2 + 1$ $y = u^2$ and $u = 3x^2 + 1$ $y = u^2$ and $u = 3x^2 + 1$ $y = u^2$ and $u = 3x^2 + 1$ $y = u^2$ and $u = 3x^2 + 1$ Does this match with the derivative of $9x^4 + 6x^2 + 1$?

How can we write this as a rule that will be easier to work with? As it turns out, the previous rule is actually the notation that 2u + 6x $3(x^2 + 1) + 6x$ 4x + 1 4x +

Leibniz worked out, but we generally use a method that Newton developed that relates to typical composite notation.

The Chain Rule:

If f is differentiable at the point u = g(x) and g is differentiable at \underline{x} , then the composite function

 $\frac{f(g(x)) \cdot g'(x)}{g(g(x)) \cdot g(g(x))} = f'(g(x)) \cdot g'(x)$ $= f'(g(x)) \cdot g'(x)$ $= f'(g(x)) \cdot g'(x)$

In Leibniz notation if $y = \underline{f}(u)$ and u = g(x), then $\frac{dy}{dx} = \frac{dy}{du} \cdot \frac{du}{dx}$ where dy/du is evaluated at u = g(x).

Remember this using the words "outside" and "inside".

The derivative of the outside, leave the inside alone, times the derivative of the inside.

CHAIN RULE

```
If y = \sin(x^2+x) \underline{f}(x) = \sin(x) "outside" and g(x) = x^2+x "inside"

Then y' = derivative of the outside function evaluated at the inside function left alone times the derivative of the inside

y = \sin(x^2+x)

y' = \cos(x^2+x) 2x+1

y' = \cos(x^2+x) 2x+1

Another example:

y = 2(3x-5) outside: y = 2u inside: y = 2u

y' = 2u' = 3 y' = 2u' = 3

y' = 2u' = 3 y' = 2u' = 3

After some practice, the rule becomes pretty easy to use.
```

```
Example Differentiate: \sin(2x+1)

Outside derivative \cos(2x+1)
Inside derivative 2

Outside times inside: 2\cos(2x+1)

y = \cos(\sqrt{3} \cdot x)
\frac{d}{dx} outside \rightarrow -\sin(\sqrt{3} \cdot x)
\frac{d}{dx} inside \rightarrow \sqrt{3}
y' = -\sqrt{3} \sin(\sqrt{3} \cdot x)
y' = -\sqrt{3} \sin(\sqrt{3} \cdot x)
```

```
We can also apply the chain rule repeatedly

Consider:

y = \sin^4(3x) = (\sin(3x))^4 + 4(\sin(3x))^3 \cdot \cos(3x) \cdot 3 = 12\sin^3(3x)\cos(3x)

y = (\sin(3x)) \cdot \cos(3x) \cdot 3 + (\sin(3x)) \cdot \cos(3x) \cdot 3 = 12\sin^3(3x)\cos(3x)

y' = 4(\sin(3x)) \cdot \cos(3x) \cdot 3 + (\sin(3x)) \cdot \cos(3x)

y' = 4(\sin(3x)) \cdot \cos(3x) \cdot 3 + (\sin(3x)) \cdot \cos(3x)

y' = 4(\sin(3x)) \cdot \cos(3x) \cdot 3 + (\sin(3x)) \cdot \cos(3x)

y' = 4(\sin(3x)) \cdot \cos(3x) \cdot 3 + (\sin(3x)) \cdot \cos(3x)

y' = 4(\sin(3x)) \cdot \cos(3x) \cdot 3 + (\sin(3x)) \cdot \cos(3x)

y' = 4(\sin(3x)) \cdot \cos(3x) \cdot 3 + (\sin(3x)) \cdot \cos(3x)

y' = 4(\sin(3x)) \cdot \cos(3x) \cdot 3 + (\sin(3x)) \cdot \cos(3x)

y' = 4(\sin(3x)) \cdot \cos(3x) \cdot 3 + (\sin(3x)) \cdot \cos(3x)

y' = 4(\sin(3x)) \cdot \cos(3x) \cdot 3 + (\sin(3x)) \cdot \cos(3x)

y' = 4(\sin(3x)) \cdot \cos(3x) \cdot 3 + (\sin(3x)) \cdot \cos(3x)

y' = 4(\sin(3x)) \cdot \cos(3x) \cdot 3 + (\sin(3x)) \cdot \cos(3x)

y' = 4(\sin(3x)) \cdot \cos(3x) \cdot 3 + (\sin(3x)) \cdot \cos(3x)

y' = 4(\sin(3x)) \cdot \cos(3x) \cdot 3 + (\sin(3x)) \cdot \cos(3x)

y' = 4(\sin(3x)) \cdot \cos(3x) \cdot 3 + (\sin(3x)) \cdot \cos(3x)

y' = 4(\sin(3x)) \cdot \cos(3x) \cdot 3 + (\sin(3x)) \cdot \cos(3x)

y' = 4(\sin(3x)) \cdot \cos(3x) \cdot 3 + (\sin(3x)) \cdot \cos(3x)

y' = 4(\sin(3x)) \cdot \cos(3x) \cdot 3 + (\sin(3x)) \cdot \cos(3x)

y' = 4(\sin(3x)) \cdot \cos(3x) \cdot 3 + (\sin(3x)) \cdot \cos(3x)

y' = 4(\sin(3x)) \cdot \cos(3x) \cdot 3 + (\sin(3x)) \cdot \cos(3x)

y' = 4(\sin(3x)) \cdot \cos(3x) \cdot 3 + (\sin(3x)) \cdot \cos(3x)

y' = 4(\sin(3x)) \cdot \cos(3x) \cdot 3 + (\sin(3x)) \cdot \cos(3x)

y' = 4(\sin(3x)) \cdot \cos(3x) \cdot 3 + (\sin(3x)) \cdot \cos(3x)

y' = 4(\sin(3x)) \cdot \cos(3x) \cdot 3 + (\sin(3x)) \cdot \cos(3x)

y' = 4(\sin(3x)) \cdot \cos(3x) \cdot 3 + (\sin(3x)) \cdot \cos(3x)

y' = 4(\sin(3x)) \cdot \cos(3x) \cdot 3 + (\sin(3x)) \cdot \cos(3x)

y' = 4(\sin(3x)) \cdot \cos(3x) \cdot 3 + (\sin(3x)) \cdot \cos(3x)

y' = 4(\sin(3x)) \cdot \cos(3x) \cdot 3 + (\sin(3x)) \cdot \cos(3x)

y' = 4(\sin(3x)) \cdot \cos(3x) \cdot 3 + (\sin(3x)) \cdot \cos(3x)

y' = 4(\sin(3x)) \cdot \cos(3x) \cdot 3 + (\sin(3x)) \cdot \cos(3x)

y' = 4(\sin(3x)) \cdot \cos(3x) \cdot 3 + (\sin(3x)) \cdot \cos(3x)

y' = 4(\sin(3x)) \cdot \cos(3x) \cdot \cos(3x)

y' = 4(\sin(3x)) \cdot \cos(3x) \cdot \cos(3x)

y' = 4(\sin(3x)) \cdot \cos(3x)

y'
```


Because powers are used so often and polynomials are so easy to differentiate, we have what's called "The Power Chain Rule". It is easy to see by examples.

Example $y = \sin^2(3x)$ $y = (x^3-2x)^4$ $y = (x^3-2x)$

```
#23
y = (1 + \cos^{2} 7x)^{3}
3 (1 + \cos^{2} 7x)^{2}(2\cos 7x)(-\sin7x)7

-42 (\sin 7x) (\cos 7x) \( (1 + \cos^{2} 7x)^{2}\)

\[
y' = (1 + \cos^{2} 7x)^{3}\]
\[
y' = 3(1 + \cos^{2} 7x)^{3}\]
\[
(0 + 2(\cos 7x)^{3}\]
\[
y' = 3(1 + \cos^{2} 7x)^{3}\]
\[
y' = 3(1 + \cos^{2} 7x)^{3}\]
\[
(2 \cos 7x)^{3}\]
\[
(-\sin (\tau)) \cdot \frac{1}{4x}(\tau)\]
\[
y' = 3(1 + \cos^{2} 7x)^{3}\]
\[
(2 \cos (7x)) \( (-\sin (7x)) \cdot \frac{1}{4x}(\tau)\)
\[
y' = 3(1 + \cos^{2} 7x)^{3}\]
\[
(2 \cos (7x)) \( (-\sin (7x)) \cdot \frac{1}{4x}(\tau)\)
\[
y' = 3(1 + \cos^{2} 7x)^{3}\]
\[
(2 \cos (7x)) \( (-\sin (7x)) \cdot \frac{1}{4x}(\tau)\)
\[
y' = 3(1 + \cos^{2} 7x)^{3}\]
\[
(2 \cos (7x)) \( (-\sin (7x)) \cdot \frac{1}{4x}(\tau)\)
\[
y' = 3(1 + \cos^{2} 7x)^{3}\]
\[
(2 \cos (7x)) \( (-\sin (7x)) \cdot \frac{1}{4x}(\tau)\)
\[
y' = 3(1 + \cos^{2} 7x)^{3}\]
\[
(2 \cos (7x)) \( (-\sin (7x)) \cdot \frac{1}{4x}(\tau)\)
\[
y' = 3(1 + \cos^{2} 7x)^{3}\]
\[
(2 \cos (7x)) \( (-\sin (7x)) \cdot \frac{1}{4x}(\tau)\)
\[
y' = 3(1 + \cos^{2} 7x)^{3}\]
\[
(2 \cos (7x)) \( (-\sin (7x)) \cdot \frac{1}{4x}(\tau)\)
\[
y' = 3(1 + \cos^{2} 7x)^{3}\]
\[
(2 \cos (7x)) \( (-\sin (7x)) \cdot \frac{1}{4x}(\tau)\)
\[
y' = 3(1 + \cos^{2} 7x)^{3}\]
\[
(2 \cos (7x)) \( (-\sin (7x)) \cdot \frac{1}{4x}(\tau)\]
\[
y' = 3(1 + \cos^{2} 7x)^{3}\]
\[
(2 \cos (7x)) \( (-\sin (7x)) \cdot \frac{1}{4x}(\tau)\]
\[
(3 \cos (7x)) \( (-\sin (7x)) \cdot \frac{1}{4x}(\tau)\]
```

