

Motion along a Line

Linear motion, position graphs s or $\mathrm{s}(\mathrm{t})$, velocity graph $\mathrm{v}(\mathrm{t})$ or s^{\prime}, acceleration graph $\mathrm{a}(\mathrm{t})$ or $\mathrm{s}^{\prime \prime}$
Suppose we have a position function that tells us the position of an object with respect to time: $\mathrm{s}=\mathrm{f}(\mathrm{t})$ Example: $\mathrm{s}(\mathrm{t})=\mathrm{t}^{2}-3 \mathrm{t}$

$$
y_{2}-y_{1}
$$

The displacement of the object over the time interval from to $t+\Delta t$, or net change in position is $\Delta s=f(t+\Delta t)-f(t)$ and the average velocity of the object over that time-interval is

$$
v_{a v}=\frac{\text { displacemene }}{\text { travel time }}=\frac{\Delta s}{\Delta t}=\frac{f(t+\Delta t)-f(t)}{\Delta t}
$$

Does this formula look familiar?
Slope formula!

Example: Find the rate of change of the area of a circle with respect to the radius.
How do we write this?
The change in y with respect to x was written $\frac{\Delta y}{\Delta x}$ or $\frac{d y}{d x}$.
Here it is area (A) with respect to radius r, so we need to write it $\frac{d A}{d r}$. $d r^{-}$. formula for finding the area of a circle? $A=\pi r^{2}$ What is its derivative? $\frac{d A}{d r}=2 \pi r$

Evaluate the rate of change for $\mathrm{r}=5$ and $\mathrm{r}=10$

$$
2 \pi(5) \quad 2 \pi(00) 20 \pi
$$

What units would be appropriate for $\frac{d A}{d r}$? $\frac{1^{10 \pi}}{\text { units }{ }^{2}}$

Instantaneous velocity is the derivative of the position function $\mathrm{s}=\mathrm{f}(\mathrm{t})$ with respect to time. At time t the velocity is
$v(t)=\frac{d s}{d t}=\lim _{\Delta t \rightarrow 0} \frac{f(t+\Delta t)-f(t)}{\Delta t}$

In our example position function of $s(t)=t^{2}-3 t$ find the derivative or in other words the velocity. $26-3$
What is the velocity at $t=3$? $2(3)-3=3$

Example 2

Pg 129

Example 3 P9129

If we take the $2^{\text {nd }}$ derivative of the position, we get the acceleration or rate of change of the velocity
The rate at which a body's velocity changes is called the body's acceleration. The acceleration measures how quickly the body picks up or loses speed.

Definition: Acceleration
Acceleration is the derivative of velocity with respect to time. If a body's velocity at time t is $v(t)=d s / d t$, then the body's acceleration at time t is $\mathrm{a}(\mathrm{t})=\mathrm{dv} / \mathrm{dt}=\mathrm{d}^{2} \mathrm{~s} / \mathrm{dt}^{2}$.

Back to $s(t)=t^{2}-3 t \quad$ Find velocity at $t=1 . \quad s^{\prime}(1)=2(1)-3 \quad s^{\prime \prime}(1)=-1$

Sometimes velocity is positive and sometimes velocity is negative. Velocity not only tells us how fast it also tells us which direction.
τ^{2} Speed is the absolute value of velocity. Speed $=|\mathrm{v}(\mathrm{t})|=|\underline{\mathrm{ds}} / \mathrm{dt}|$
negative velocity means the position moving to the left,
positive velocity means position moving to the right.
zero velocity means the position is stopped.

Remember Free-fall constants (on Earth)		
English units: (s in feet)	$\mathrm{s}=16 \mathrm{t}^{2}$	$\mathrm{g}=\mathrm{a}=32 \mathrm{ft}$
Metric units. (s in meters) $\mathrm{s}=4.9 \mathrm{~g}=\mathrm{a}=9.8 \mathrm{~m} / \mathrm{sec}^{2}$		
\#13 page 136		
$v(t)=24-1.6 t \mathrm{~m} / \mathrm{sec}$		
$a(\dagger)=-1.6 \quad \mathrm{~m} / \mathrm{sec}^{2}$		
what is the slope at a maximum? zero		
$0=24-1.6 \dagger$ and solve		
$24 / 1.6=15$ so $t=15 \mathrm{sec}$		
part c)		
How high did rock go. Plug is 15 sec into $s(\dagger)$		
$s(15)=24(15)-.8(15)^{2}$		
180 meters	part d)	
	when did rock use calculat	$1 / 2$ of maximum.
	$24 \mathrm{t}-.8 \mathrm{t}^{2}=90$	dintersection points
part e) $\quad \dagger \approx 4.393 \mathrm{sec}$ and $\dagger \approx 25.607$		
How long is the rock in motion?		
$0=24 t-.8 t^{2}$		
30 seconds		

Example 4 \& 5

$\mathrm{Pg} \mid 3 D$

Remember:

$v(t)<0$ means the position function is moving to the left $v(t)>0$ means the position function is moving to the right $v(t)=0$ means the position function is stop

Exploration \#2 and \#3

Read and follow the instructions
for each exploration

The first derivative allows us to see how sensitive a function is to change. If $d / d x$ is constant, it's not sensitive. If it's not, it can have varying degrees of sensitivity.

When a small change in x produces a large change in the value of a function we say that the function $f(x)$ is relatively sensitive to changes in x. The derivative $f^{\prime}(x)$ is a measure of this sensitivity.

In other words the steeper the curve the more sensitive to change the function is.
Example 6

Derivatives in Economics

As we have seen $s^{\prime}=$ velocity $=\frac{d s}{d t}$ and $s^{\prime \prime}=v^{\prime}=$ acceleration $=\frac{d^{2} s}{d t^{2}}$
The derivative of a cost function gives us the marginal cost, the rate at which the cost changes as production amount changes.
\#27 page 138. $C^{\prime}(x)=$ marginalcost
$C(x)=2000+100 x-.1 x^{2}$
average cost of $x=100$

$C^{\prime}(x)=100-0.2 x$
$C^{\prime}(100)=100-0.2(100)$

