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TT-3 notes calculus
Polar coordinates and Polar Graphs

When we first learned about vectors we learned that vectors had
magnitude and direction. We then had position vectors that told
us how far the particle was from the origin and in which
direction. As it turns out there is a coordinate system that is set
up for this type of tracking system. It is called the Polar
Coordinate System. What does it look like?
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Polar Coordinates
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1 is the directed distance from O to P 6 is the directed angle
from initial ray to ray OP
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Polar Graphing

Examples:

Equation Polar Graph
r=a Circle of radius |4 centered at 0.
0=a Line through O making an angle a wi
ray.
Examples: r=1 r=1.5
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Example 2 Graphing with Polar Coordinates
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There are much more mteresting polar functions
matk &b
Example: r=1-sn 06 (Graph by hand)
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Without much difficulty we can show how polar graphs relate to
Cartesian graphs. Polar graphs have a huge advantage in that
they can graph things that don’t appear to be functions n the
Cartesian form. To make the conversion, we need only picture
anv point on a polar graph.
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There are other relationships that naturally arise. Using the
theorem of Pwhaooras we get.
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Also using trig we get tang = % or
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Example 4:
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The Parametric Equations of Polar Curves
The polar graph of r = {(0) 1s the curve defined parametrically
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Since polar curves are drawn i the xy-plane, the slope of a
L : . ..d
polar curve 1s still the slope of the tangent line. which 1q£ The

polar-rectangular conversion formulas enable us to write x and y
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We should note that special circumstances do arise.

1. Horizontal tangent at a point where dy/d0 =0 and dx/d6=0
2. Vertical tangent at a point where dx/df = 0 _and dy/d6+0

3. Inconclusive when dx/d8 = dy/d6 =0 = L‘RD hal B
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39. Find the slope of the curve at each indicated point.
r=—14 sinf,8 =0,
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Area Between Polar Curves: The area of the region between
r()and r,(0) fora <8 < f is
(1= 12 2ria0 = el e —ri)
Example 8 el o |-es6
i [
2 _ 2
2 go 1A 4o
1
z S;‘ al>-x) &
Sf *-( l-cos®) d©
S‘{ | - (\-’lcoﬁ-toos’O)Je
(% JT+2c0s0 - (2 *%5?) do
o
§. 2030 -} - a"‘é“b dé
-~
AsmB ~30 - ﬂ‘:i’ -
0o
(19»\‘{ - {({\-Sm(ﬁ)_’ ()
9 - I
@




calculus 11.3 notes 1st.notebook

March 12, 2020

cardioid r = 2(1 — cos) =2 '&‘059

iﬂﬁﬂ

afr+ 2y -8
5 -¥)

53. Find the area of the region shared by the circle r = 2 and the
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73. Length of a Polar Curve [ L = f‘f 2+ (%
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