Analyzing Functions Study Guide

Domain and Range:

- Domain: all \boldsymbol{x}-coordinates on the graph from left to right.
- Range: all y-coordinates on the graph from bottom to top.
- Graphs with unconnected dots (no solid line): List x 's and y 's in $\{$ and $\}$.
- Don't list repeated numbers more than once.
- Graphs with solid lines (even if there are labeled dots on it):
- Use interval notation: $(\ldots, \ldots),(\ldots, \ldots],[\ldots, \ldots)$, or $[\ldots, \ldots]$.
- If there's an arrow on the end of a graph, the domain and range will involve $-\infty$ or ∞.
- Use [or] for endpoints and vertices (places where the graph changes direction).
- Use (or) for $-\infty, \infty$, asymptotes, or open circles.

Increasing, Decreasing or Constant: (Write x 's)

- Write \boldsymbol{x}-coordinates where graph starts and stops going each direction from left to right.
- Always use (and).
- Increasing: Uphill from left to right.
- Decreasing: Downhill from left to right.
- Constant: Flat.

- Hint: Look for places where the graph changes direction (relative maxima or relative minima) to help you break the graph into intervals.
- Use the \cup sign to connect multiple intervals: $(\ldots, \ldots) \cup(\ldots, \ldots)$

Positive or Negative: (Write x 's)

- Positive: Above \boldsymbol{x}-axis.
- Negative: Below \boldsymbol{x}-axis.

- Divide the graph into the parts that are above the x-axis and the parts that are below the x-axis using the x-intercepts. Write \boldsymbol{x}-coordinates for the start and end of each interval from left to right.
- Use (and) at x-intercepts.
- Use [or] only when there is an endpoint above or below the x-axis.
- Use the \cup sign to connect multiple intervals: $(\ldots, \ldots) \cup(\ldots, \ldots)$

Intercepts: The points where the graph crosses the x - or y-axis.

- Write intercepts as ordered pairs.
- x-intercepts are written as $(x, 0)$.
- y-intercepts are written as $(0, y)$.
- To find \boldsymbol{x}-intercepts algebraically, set $\boldsymbol{y}=0$ and solve for \boldsymbol{x}.
- To find \boldsymbol{y}-intercepts algebraically, set $\boldsymbol{x}=0$ and solve for \boldsymbol{y}.

Relative Maximum or Relative Minimum:

- Relative maximum: a point on the graph that is higher than all the points around it.
- Relative minimum: a point on the graph that is lower than all the points around it.
- Maximum or minimum point: Write ordered pair: (x, y).
- Maximum or minimum value: Write y-coordinate of the point.

End Behavior: End behavior describes what is happening to the \boldsymbol{y}-coordinates of the graph as you move left $(x \rightarrow-\infty)$ or as you move right $(x \rightarrow \infty)$.

- Left end behavior looks like this: $\lim _{x \rightarrow-\infty} f(x)=$ \qquad .
- Right end behavior looks like this: $\lim _{x \rightarrow \infty} f(x)=$
- Arrow pointing up: Write ∞
- Arrow pointing down: Write $-\infty$
- Endpoint (no arrow): Write D.N.E. (does not exist)
- Asymptote or flat end with arrow: Write y-coordinate of asymptote or flat part

Symmetry:

- Even symmetry (y-axis):
- The left and right sides are mirror images around the v-axis. (Left and right sides would overlap if you fold the graph along the y-axis).

Even:

- Odd symmetry (origin):
- If you fold the graph along the x-axis and then along the y-axis, the two halves will overlap.
- If you spin the graph around 180°, you will end up with what you started with.

Odd:

