Analyzing Functions Study Guide

Domain and Range:

- **Domain:** all *x*-coordinates on the graph from *left* to *right*. ٠
- **Range:** all *v*-coordinates on the graph from *bottom* to *top*. •
 - Graphs with unconnected dots (no solid line): List x's and y's in $\{$ and $\}$.
 - Don't list repeated numbers more than once.
 - Graphs with solid lines (even if there are labeled dots on it):
 - Use interval notation: (__,__), (__,__], [__,_), or [__,_].
 - If there's an arrow on the end of a graph, the domain and range will involve $-\infty$ or ∞ .
 - Use [or] for endpoints and vertices (places where the graph changes direction).
 - Use (or) for $-\infty$, ∞ , asymptotes, or open circles. •

Increasing, Decreasing or Constant: (Write *x*'s)

- Write *x*-coordinates where graph *starts* and *stops* going each direction from *left* to *right*. •
- Always use (and).
- Increasing: *Uphill* from *left* to *right*. •
- Decreasing: *Downhill* from *left* to *right*. ٠
- Constant: *Flat*.
- Hint: Look for places where the graph changes direction (relative maxima or relative minima) to help • you break the graph into intervals.
- Use the \cup sign to connect multiple intervals: $(_,_)\cup(_,_)$

Positive or Negative: (Write *x*'s)

- Positive: *Above x*-axis.
- Negative: *Below x*-axis. •
- Divide the graph into the parts that are above the x-axis and the parts that are below the x-axis using the • x-intercepts. Write x-coordinates for the start and end of each interval from left to right.
- Use (and) at *x*-intercepts.
- Use [or] only when there is an *endpoint above or below the x-axis*. •
- Use the \cup sign to connect multiple intervals: $(_,_) \cup (_,_)$

Intercepts: The points where the graph crosses the *x*- or *y*-axis.

- Write intercepts as ordered pairs.
 - \circ x-intercepts are written as (x, 0).
 - \circ y-intercepts are written as (0, y).
- To find *x*-intercepts algebraically, set y = 0 and solve for *x*.
- To find *y*-intercepts algebraically, set x = 0 and solve for *y*. •

Relative Maximum or Relative Minimum:

- **Relative maximum:** a point on the graph that is **higher** than all the points around it.
- **Relative minimum:** a point on the graph that is **lower** than all the points around it.
- **Maximum or minimum** *point***:** Write ordered pair: (x, y). •
- Maximum or minimum value: Write v-coordinate of the point.

Positive (above)

End Behavior: End behavior describes what is happening to the *y*-coordinates of the graph as you move left $(x \rightarrow -\infty)$ or as you move right $(x \rightarrow \infty)$.

- Left end behavior looks like this: $\lim_{x \to -\infty} f(x) =$ ____.
- **Right end behavior** looks like this: $\lim f(x) =$ ____.
- Arrow pointing up: Write ∞
- Arrow pointing down: Write $-\infty$
- Endpoint (no arrow): Write D.N.E. (does not exist)
- Asymptote or flat end with arrow: Write y-coordinate of asymptote or flat part

Symmetry:

- Even symmetry (y-axis):
 - The left and right sides are mirror images around the *v*-axis. (Left and right sides would overlap if you fold the graph along the *y*-axis). y

• Odd symmetry (origin):

- If you fold the graph along the *x*-axis and then along the *y*-axis, the two halves will overlap.
- If you spin the graph around 180°, you will end up with what you started with.

