## Sequences

A sequence $\left\{a_{n}\right\}$ is a list of numbers written in an explicit order. $\left\{a_{n}\right\}=\left\{a_{1}, a_{2}, a_{3}, \ldots, a_{n} \ldots\right\} \quad a_{1}$ is the first term, $\mathrm{a}_{2}$ is the second term and so forth. A sequence never ends. The numbers in the list are called the terms of the sequence and $a_{n}$ is the $\mathbf{n t h}$ term. A sequence can be finite or infinite.

## Example1: Defining a Sequence Explicitly

Find the first six terms and the $100^{\text {th }}$ term of the sequence $\left\{a_{n}\right\}$ where $a_{n}=\frac{(-1)^{n}}{n^{2}+1}$

The sequence in example one was defined explicitly.
A second way of defining a sequence is recursively which assigns a value to the first (or the first few) term(s) and specifies the nth term by a formula or equation that involves one or more of the terms preceding it.

## Example 2: Defining a Sequence Recursively

## Definition Arithmetic Sequence

A sequence $\left\{a_{n}\right\}$ is an arithmetic sequence if it can be written in the form $\{a, a+d, a+2 d, \ldots, a+(n-1) d, \ldots$ for some constant $d$. The number $d$ is the common difference. Each term in an arithmetic sequence can be obtained recursively from its preceding term by adding d: $\mathbf{a}_{\mathbf{n}}=\mathbf{a}_{\mathbf{n} \mathbf{- 1}}+\mathbf{d}$ for all $\mathrm{n} \geq 2$.

## Example 3

## Definition Geometric Sequence

A sequence $\left\{a_{n}\right\}$ is a geometric sequence if it can be written in the form
$\left\{\mathrm{a}, \mathrm{ar}, \mathrm{ar}^{2}, \ldots, \mathbf{a} \cdot \mathbf{r}^{(\mathbf{n}-\mathbf{1})}, \ldots\right.$ for some constant $\mathbf{r}$. The number $\mathbf{r}$ is the common ratio. Each term in a geometric sequence can be obtained recursively from its preceding term by multiplying by $r$ : $\mathbf{a}_{\mathbf{n}}=\mathbf{a}_{\mathbf{n}-1} \cdot \mathbf{r}$ for all $\mathrm{n} \geq 2$.

Example 4

Example 5

Example 6:

## Example 7:

## Definition: Limit

Let $L$ be a real number. The sequence $\left\{a_{n}\right\}$ has limit $L$ as $n$ approaches $\infty$ if, given any positive number $\epsilon$, there is a positive number M such that for all $\mathrm{n}>\mathrm{M}$ we have $\left|\mathrm{a}_{n}-L\right|<\epsilon$
We write $\lim _{n \rightarrow \infty} a_{n}=L$ and say that the sequence converges to $L$. Sequences that do not have limits diverge.

## Theorem 1: Properties of Limits

If $L$ and $M$ are real numbers and $\lim _{n \rightarrow \infty} a_{n}=L$ and $\lim _{n \rightarrow \infty} b_{n}=M$, then
Sum Rule: $\lim _{n \rightarrow \infty}\left(a_{n}+b_{n}\right)=L+M \quad$ Difference Rule: $\lim _{n \rightarrow \infty}\left(a_{n}-b_{n}\right)=L-M$
Product Rule: $\lim _{n \rightarrow \infty}\left(a_{n} b_{n}\right)=L M \quad$ Constant Multiple Rule: $\lim _{n \rightarrow \infty}\left(c \cdot a_{n}\right)=c \cdot L$
Quotient Rule: $\lim _{n \rightarrow \infty}\left(\frac{a_{n}}{b_{n}}\right)=\frac{L}{M}, \quad M \neq 0$
Example 8

Example 9

## Theorem 2: The Sandwich Theorem for Sequences

If $\lim _{n \rightarrow \infty} a_{n}=\lim _{n \rightarrow \infty} c_{n}=L$ and if there is an integer N for which $a_{n} \leq b_{n} \leq c_{n}$ for all $\mathrm{n}>\mathrm{N}$, then $\lim _{n \rightarrow \infty} b_{n}=L$

Example 10 Using the Sandwich Theorem

Theorem 3 Absolute Value Theorem
Consider the sequence $\left\{\mathrm{a}_{\mathrm{n}}\right\}$. If $\lim _{n \rightarrow \infty}\left|a_{n}\right|=0$, then $\lim _{n \rightarrow \infty} a_{n}=0$

