Parametric Equations

Sometimes, it is convenient to express both x and y as functions of a third variable, t. If $f(t)$ and $g(t)$ are both functions of t, where t is some interval of real numbers, then the equations $x=f(t)$ and $y=g(t)$ are called parametric equations. The variable t is called the parameter. If we think of t as time, then we know when each point of the graph is plotted.

Graphing Parametric Equations

1. Make a t, x, y table for the two equations.
2. Plot the ordered pairs of values of x and y.
3. Mark the orientation of the curve by using arrows to show the direction of the graph.

Example: Graph the parametric equations $x=t+5$ and $y=2 t-1$ for t in $[0,5]$.

Eliminating the Parameter

1. Set one equation equal to t.
2. Substitute that equation in for t in the other equation.
3. Sometimes it is more convenient to use a trigonometric identity to eliminate the parameter.

Examples: Eliminate the parameter and identify the graph of the parametric equation.
a) $x=4 t-9, y=-t+1,-\infty<t<\infty$
b) $x=2 \sqrt{t}, y=8 t+6, \quad 0 \leq t<\infty$
c) $x=5 \sin t, y=5 \cos t,-\infty<t<\infty$
d) $x=2 \sin \theta, y=3 \cos \theta, \quad-\infty<\theta<\infty$

Writing Parametric Equations for Line Segments

1. Write both parametric equations as linear functions: $x=m_{1} t+b_{1}$, and $y=m_{2} t+b_{2}$.
2. Substitute x and t values into the x equation to create a system of equations you can solve for m_{1} and b_{1}.
3. Substitute y and t values into the y equation to create a system of equations you can solve for m_{2} and b_{2}.

Examples:

Write parametric equations for the line segment starting at $(1,2)$ with $t=0$ and ending at $(8,10)$ with $t=1$.

Write parametric equations for the line segment starting at $(-2,4)$ with $t=3$ and ending at $(5,-9)$ with $t=7$.

Writing Parametric Equations for a Polar Equation

Use the equations $x=r \cos \theta$ and $y=r \sin \theta$. Replace r to obtain the parametric equations. When converting polar equations to parametric equations, θ acts as the parameter.

Example: Write parametric equations for the polar equation $r=3 \cos \theta$.

