Precalculus
7.6 Homework

Graph each pair of parametric equations in the rectangular coordinate system. Label or make a table with the exact coordinates of at least 3 points on each graph.

1. $x=3 t-2, y=t+3$, for $0 \leq t \leq 4$
2. $x=4-3 t, y=3-t$, for $1 \leq t \leq 3$
3. $x=t-1, y=t^{2}$, for t in $(-\infty, \infty)$
4. $x=t-3, y=1 / t$, for t in $(-\infty, \infty)$
5. $x=t-2, y=\sqrt{t+2}$, for $-2 \leq t \leq 7$
6. $x=4 \cos t, y=4 \sin t$

Eliminate the parameter and identify the graph of each pair of parametric equations.
7. $x=4 t-5, y=3-4 t$
8. $x=t+4, y=\sqrt{t-5}$
9. $x=t-5, y=t^{2}-10 t+25$
10. $x=2 \sin t \cos t, y=3 \sin (2 t) \quad$ (Hint: Identities!)
11. $x=5 \sin t, y=3 \cos t$
12. $x=-4 \sin (3 t), y=4 \cos (3 t)$

Write a pair of parametric equations that will produce the indicated graph.
13. The line segment starting at $(2,3)$ with $t=0$ and ending at $(5,9)$ with $t=2$
14. The line segment starting at $(-3,-3)$ with $t=2$ and ending at $(5,1)$ with $t=6$
15. The line segment starting at $(6,-3)$ with $t=5$ and ending at $(3,4)$ with $t=8$
16. The portion of the circle $x^{2}+y^{2}=9$ that lies below the x-axis. (Hint: Convert to polar first.)
17. The circle whose polar equation is $r=2 \sin \theta$
18. The vertical line that passes through the point $(3,1)$

The following problem involves the parametric equations for the path of a projectile:

$$
x=v_{0}(\cos \theta) t \text { and } y=-16 t^{2}+v_{0}(\sin \theta) t+h_{0}
$$

where x is the horizontal distance traveled and \boldsymbol{y} is the height (both in feet) after \boldsymbol{t} seconds, θ is the angle of inclination of the projectile at the launch, v_{0} is the initial velocity of the projectile in feet per second, and $\boldsymbol{h}_{\mathbf{0}}$ is the initial height of the projectile in feet.
19. An archer shoots an arrow from a height of 5 feet at an angle of inclination of 30° with an initial velocity of $300 \mathrm{ft} / \mathrm{sec}$.
a. Write the parametric equations for the path of the projectile and sketch the graph of the parametric equations.
b. How long will the arrow stay in flight before it hits the ground? Solve algebraically.
c. What is the maximum height reached by the arrow? Solve algebraically.
d. If the arrow strikes a target at a height of 5 feet, then how far is the target from the archer? Solve algebraically.

