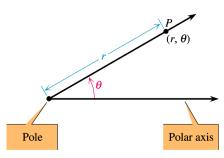
Polar Coordinates and Polar Equations



The polar coordinate system is based on a fixed point called the **pole** and a fixed axis called the **polar axis.** Points are represented by ordered pairs in the form (r,θ) , where r is the **directed distance**

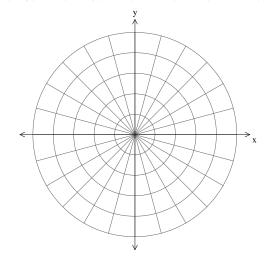
from the pole and θ is an angle whose initial side is the polar axis and whose terminal side contains the point.

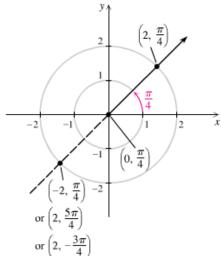
Typically, we choose the origin as the pole and the positive x-axis as the polar axis.

*To graph $(-r,\theta)$, you move in the opposite direction you would move to graph (r, θ) .

Polar coordinates are not unique. The points $\left(-2,\frac{\pi}{4}\right)$, $\left(2,\frac{5\pi}{4}\right)$, and $\left(2,-\frac{3\pi}{4}\right)$ all name the same point.

Examples: Plot the points whose polar coordinates are given. $A(3,\frac{\pi}{3}), B(-1,\frac{\pi}{6}), C(2,-\frac{7\pi}{4}), D(-5,-\frac{3\pi}{4}), E(4,\frac{\pi}{2}), F(-3,\frac{2\pi}{3})$





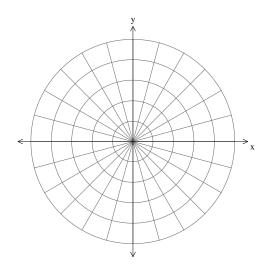
Polar-Rectangular Conversion Rules

- To convert (r,θ) to rectangular coordinates (x,y), use $x = r\cos\theta$ and $y = r\sin\theta$.
- To convert (x, y) to polar coordinates (r, θ) , use $r = \sqrt{x^2 + y^2}$ and any angle θ in standard position whose terminal side contains (x, y).

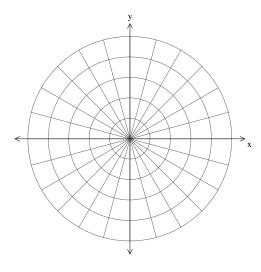
Examples:

- a) Convert $(3,45^{\circ})$ to rectangular coordinates. b) Convert $(-2,2\sqrt{3})$ to polar coordinates.

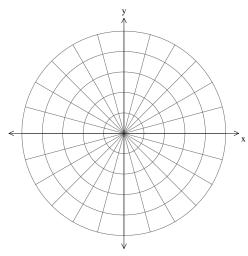
Graphing Polar Equations Examples: Sketch the graphs of the following: a) $r = 4 \sin \theta$



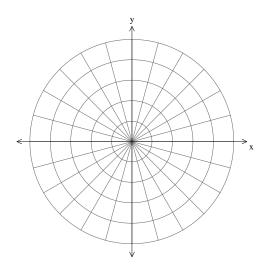
b) $r = 3\cos(2\theta)$



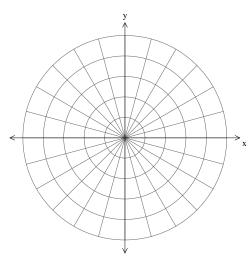
c) $r = 2 + 3\sin\theta$



d) $r^2 = 4\sin(2\theta)$



e) $r = 5\sin(4\theta)$



Examples: Convert equations from polar to rectangular form. a) Convert $r = 3\sin\theta$ to a rectangular equation.

b) Convert $r = \frac{4}{1 + \sin \theta}$ to a rectangular equation.

c) Convert $r = 5 \sec \theta$ to a rectangular equation.

d) Convert r = 5 to a rectangular equation.

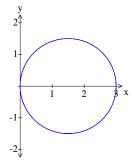
Examples: Convert equations from rectangular to polar form.

a) Convert y = 7 to a polar equation.

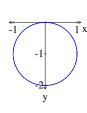
b) Convert y = -2x + 5 to a polar equation.

c) Convert $x^2 + (y-1)^2 = 1$ to a polar equation.

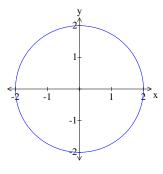
- 1) Lines through the origin are of the form $\theta = \alpha$. Vertical lines are of the form $r = a \sec \theta$. Horizontal lines are of the form $r = a \csc \theta$.
- 2) Circles come in three forms: $r = a \cos \theta$, $r = a \sin \theta$, and r = a.



 $r = 3\cos\theta$

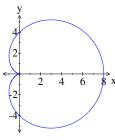


$$r = -2\sin\theta$$

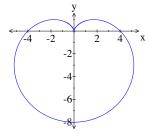


$$r = 2$$

3) Cardioids have the form $r = a \pm a \cos \theta$ or $r = a \pm a \sin \theta$. Cardioids pass through the pole.

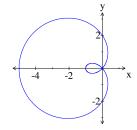


$$r = 4 + 4\cos\theta$$

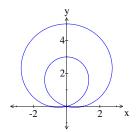


$$r = 4 - 4\sin\theta$$

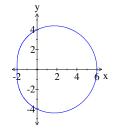
4) Limaçons have the form $r = a \pm b \cos \theta$ or $r = a \pm b \sin \theta$. Limaçons have an inner loop if 0 < a < b and have no inner loop if 0 < b < a. The graph of a limaçon with an inner loop passes through the pole twice. The graph of a limaçon with no inner loop does not pass through the pole.



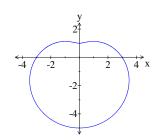
 $r = 2 - 3\cos\theta$



 $r = 1 + 4\sin\theta$

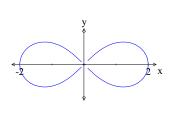


 $r = 4 + 2\cos\theta$

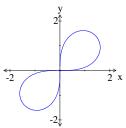


 $r = 3 - 2\sin\theta$

5) Lemniscates have the form $r^2 = a^2 \cos(2\theta)$ or $r^2 = a^2 \sin(2\theta)$.

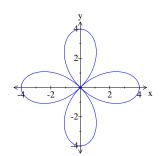


 $r^2 = 4\cos(2\theta)$

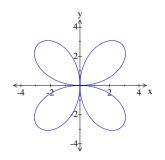


 $r^2 = 4\sin(2\theta)$

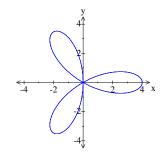
6) Roses have the form $r = a\cos(n\theta) + b$ and $r = a\sin(n\theta) + b$. If *n* is even, there are 2n loops in the rose. If *n* is odd, there are n loops in the rose.



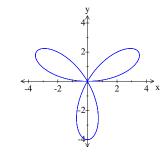
 $r = 4\cos(2\theta)$



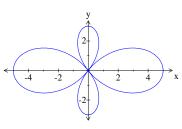
 $r = 4\sin(2\theta)$



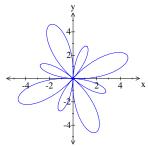
 $r = 4\cos(3\theta)$



 $r = 4\sin(3\theta)$



 $r = 4\cos(2\theta) + 1$



 $r = 4\sin\left(4\theta\right) + 1$