Powers and Roots of Complex Numbers

De Moivre's Theorem

If $z = r(\cos\theta + i\sin\theta)$ is a complex number and *n* is any positive integer, then

 $z^n = r^n \left(\cos n\theta + i\sin n\theta\right)$

Examples:

a) Simplify $(1+i)^6$. b) Simplify $(\sqrt{3}-i)^4$.

Roots of a Complex Number

How many square roots does 4 have? How many square roots does -9 have? How many sixth roots does 1 have?

It turns out that 1 has 6 sixth roots, and they are distributed evenly around the complex plane.

The complex number a + bi is an *n*th root of the complex number z if $(a + bi)^n = z$.

For any positive integer *n*, the complex number $z = r(\cos \theta + i \sin \theta)$ has exactly *n* distinct *n*th roots given by the expression $r^{1/n}(\cos \alpha + i \sin \alpha)$ where $\alpha = \frac{\theta + 360^{\circ}k}{n}$ for k = 0, 1, 2, ..., n-1. In radians, the roots are given by $r^{1/n}(\cos \alpha + i \sin \alpha)$ where $\alpha = \frac{\theta + 2k\pi}{n}$ for k = 0, 1, 2, ..., n-1.

The first of the *n* roots has an argument of $\frac{\theta}{n}$, and the other roots are spaced $\left(\frac{360}{n}\right)^{\circ}$ apart. (The circle is divided evenly into *n* pieces.)

Examples:

a) Find all of the fourth roots of the complex number $-8-8i\sqrt{3}$.

b) Find all the cube roots of -125.

c) Find all complex solutions to $x^3 - 27i = 0$.