Powers and Roots of Complex Numbers

De Moivre's Theorem

If $z=r(\cos \theta+i \sin \theta)$ is a complex number and n is any positive integer, then

$$
z^{n}=r^{n}(\cos n \theta+i \sin n \theta)
$$

Examples:

a) Simplify $(1+i)^{6}$.
b) Simplify $(\sqrt{3}-i)^{4}$.

Roots of a Complex Number

How many square roots does 4 have?
How many square roots does -9 have?
How many sixth roots does 1 have?
It turns out that 1 has 6 sixth roots, and they are distributed evenly around the complex plane.

Sixth Roots of Unity

The complex number $a+b i$ is an nth root of the complex number z if $(a+b i)^{n}=z$.

For any positive integer n, the complex number $z=r(\cos \theta+i \sin \theta)$ has exactly n distinct nth roots given by the expression $r^{1 / n}(\cos \alpha+i \sin \alpha)$ where $\alpha=\frac{\theta+360^{\circ} k}{n}$ for $k=0,1,2, \ldots, n-1$.
In radians, the roots are given by $r^{1 / n}(\cos \alpha+i \sin \alpha)$ where $\alpha=\frac{\theta+2 k \pi}{n}$ for $k=0,1,2, \ldots, n-1$.

The first of the n roots has an argument of $\frac{\theta}{n}$, and the other roots are spaced $\left(\frac{360}{n}\right)^{\circ}$ apart.
(The circle is divided evenly into n pieces.)

Examples:

a) Find all of the fourth roots of the complex number $-8-8 i \sqrt{3}$.
b) Find all the cube roots of -125 .
c) Find all complex solutions to $x^{3}-27 i=0$.

