Antidifferentiation (Integration) by Parts

One of the most useful derivative formulas is the product rule, which is $\frac{d}{d x} u v=u \frac{d v}{d x}+v \frac{d u}{d x}$
If we integrate with respect to " x " we get
$\int\left(\frac{d}{d x} u v\right) d x=\int\left(u \frac{d v}{d x}\right) d x+\int\left(v \frac{d u}{d x}\right) d x$
Rearranging we get $\int u \frac{d v}{d x} d x=\int \frac{d}{d x} u v d x-\int v \frac{d u}{d x} d x$
If we think of all the d's, dv's and dx's as differentials then we get (from the FTC: differentiation and integration are inverses of one another)
$\int u d v=u v-\int v d u$
This is the integration by parts formula (Ibp). It expresses one integral in terms of another one. If we choose \mathbf{u} and dv carefully, the second integral may be easier to integrate.

Notice the formula uses \mathbf{u}, \mathbf{v}, and $\mathbf{d u}$, but the original integral only has \mathbf{u} and $\mathbf{d v}$. So to use the formula we will need to differentiate \mathbf{u} and antidifferentiate $\mathbf{d v}$. This will help us carefully pick \mathbf{u} and $\mathbf{d v}$.

Let's try this on a problem.
Example: $\int x \cos x d x \quad$ Let $\mathbf{u}=\mathbf{x} \quad$ and $\quad \mathbf{d v}=\boldsymbol{\operatorname { c o s }} \mathbf{x d x}$

$$
\text { This is an easy derivative }(\mathbf{d u}=\mathbf{d x}) \text { easy antiderivative } \mathbf{v}=\boldsymbol{\operatorname { s i n }} \mathbf{x}
$$

Formula:

$$
\begin{aligned}
& \int u d v=u v-\int v d u \\
& \int x \cos x d x=x \sin x-\int \sin x d x \\
& \int x \cos x d x=x \sin x+\cos x+C
\end{aligned}
$$

This isn't so bad, but what if we chose the wrong \mathbf{u} and $\mathbf{d v}$?

Exploration 1

LIPET: If you are wondering what to choose for \boldsymbol{u}, here is what we usually do. Our first choice is a natural logarithm (\mathbf{L}), if there is one. If there isn't, we look for an inverse trig function (\mathbf{I}). If there isn't one of these either, look for a polynomial (\mathbf{P}). Still nothing, look for an exponential (\mathbf{E}) or a trig function (T). That's the preference order: LIPET In general, we want u to be something that simplifies when differentiated, and $\mathbf{d v}$ to be something that remains manageable when integrated.

$$
\begin{array}{ll}
\int x^{2} \cos x d x & u=x^{2} \\
d u=2 x d x & d v=\cos x d x \\
\int x^{2} \cos x d x=x^{2} \sin x-\int(\sin x) 2 x d x \\
=x^{2} \sin x-\int 2 x \sin x d x & \\
=x^{2} \sin x-2 \int x \sin x d x & u=x \text { and } d v=\sin x d x \\
=x^{2} \sin x-2\left[x(-\cos x)-\int-\cos x d x\right] & d u=d x \text { and } v=-\cos x \\
=x^{2} \sin x+2 x \cos x-2 \int \cos x d x & \\
x^{2} \sin x+2 x \cos x-2 \sin x+C &
\end{array}
$$

On some problems, it seems it doesn't matter what you pick.

$$
\begin{aligned}
& \text { \#17 } \quad \int e^{x} \sin x d x \quad \text { Let } \mathrm{u}=\sin \mathrm{x} \text { so du }=\cos \mathrm{x} d \mathrm{dx} \text { and let } \mathrm{dv}=\mathrm{e}^{\mathrm{x}} \mathrm{dx} \text { so } \mathrm{v}=\mathrm{e}^{\mathrm{x}} \\
& =e^{x} \sin x-\int e^{x} \cos x d x \quad \text { Let } \mathrm{u}=\cos \mathrm{x} \quad \text { so } \mathrm{du}=-\sin \mathrm{x} \text { dx and let } \mathrm{dv}=\mathrm{e}^{\mathrm{x}} \mathrm{dx} \operatorname{sov}=\mathrm{e}^{\mathrm{x}} \\
& =e^{x} \sin x-\left[e^{x} \cos x-\int e^{x}(-\sin x d x)\right] \\
& \int e^{x} \sin x d x=e^{x} \sin x-\left[e^{x} \cos x+\int e^{x} \sin x d x\right] \\
& \int e^{x} \sin x d x=e^{x} \sin x-e^{x} \cos x-\int e^{x} \sin x d x \\
& \text { *same } \\
& 2 \int e^{x} \sin x d x=e^{x} \sin x-e^{x} \cos x \quad \text { *same } \\
& \int e^{x} \sin x d x=\frac{e^{x} \sin x-e^{x} \cos x}{2}+C
\end{aligned}
$$

In this problem, because the derivatives and integrals of e^{x} and $\sin (x)$ keep reappearing, the original integral reappears and we can solve for it.

If we have integrals where the function we choose for u can be differentiated repeatedly until it becomes zero (i.e. power function) and dv can be easily integrated repeatedly, then we can do Tabular Integration. This is a fancy way to say integrating from a table. We will now use $\mathbf{u}=\mathbf{f}$ and $\mathbf{d v}=\mathbf{g}$
On \#5 we did $\int x^{2} \cos x d x$ and used Integration by parts. Now let's use tabular.

$\mathbf{f}(\mathbf{x})$ and its derivatives	$\mathbf{g}(\mathbf{x})$ and its integrals
$\mathrm{x}^{2}(+)$	$\cos \mathrm{x}$
2 x	$(-)$
2	$(+)$
0	$-\cos \mathrm{x}$
0	$(-)$

Once you have the table the integral is each version of f times each version of g that is one step lower with the attached sign + or - (multiply diagonally). Don't forget "Plus C"

$$
\int x^{2} \sin x d x=x^{2} \sin x+2 x \cos x-2 \sin x+C
$$

$$
\int x^{3} e^{-2 x} d x
$$

