Antidifferentiation by Substitution

Chapter 7 gives us some techniques for finding integrals or antiderivatives.
Definition: Indefinite Integral
The family of all antiderivatives of a function $\mathrm{f}(\mathrm{x})$ is the indefinite integral of \boldsymbol{f} with respect to \mathbf{x} and is denoted by $\int f(x) d x$. If F is any function such that $F^{\prime}(x)=f(x)$, the $\int f(x) d x=F(x)+C$, where C is an arbitrary constant, called the constant of integration.
\int is the integral sign, the function f is the integrand of the integral and x is the variable of integration

When we find $\mathrm{F}(\mathrm{x})+\mathrm{C}$ we have integrated f or evaluated the integral.
Example 1

Properties of Indefinite Integrals

$\int k f(x) d x=k \int f(x) d x$ for any constant k
$\int(f(x) \pm g(x)) d x=\int f(x) d x \pm \int g(x) d x$

Power Formulas

$\int u^{n} d u=\frac{u^{n+1}}{n+1}+C$, when $n \neq-1 \quad \int u^{-1} d u=\int \frac{1}{u} d u=\ln |u|+C$

Trigonometric Formulas

$\int \cos u d u=\sin u+C$
$\int \sin u d u=-\cos u+C$
$\int \sec ^{2} u d u=\tan u+C$
$\int \csc ^{2} u d u=-\cot u+C$
$\int \sec (u) \tan (u) d u=\sec u+C$
$\int \csc (u) \cot (u) d u=-\csc u+C$

Exponential and Logarithmic Formulas

$\begin{array}{ll}\int e^{u} d u=e^{u}+C & \int a^{u} d u=\frac{a^{u}}{\ln a}+C \\ \int \ln u d u=u \ln u-u+C & \\ \int \log _{a} u d u=\int \frac{\ln u}{\ln a} d u=\frac{u \ln (u)-u}{\ln a}+C & \end{array}$

Example 2 verifies Antiderivative formulas

Example 3 Paying Attention to the Differential

Here is a table that might be helpful in antidifferentiating functions Indefinite Integral

Reversed Derivative Formula

$\int x^{n} d x=\frac{x^{n+1}}{n+1}+C, n \neq-1$	$\frac{d}{d x}\left(\frac{x^{n+1}}{n+1}\right)=x^{n}, n \neq-1$
$\int \frac{1}{x} d x=\ln \|x\|+C$	$\frac{d}{d x} \ln \|x\|=\frac{1}{x}$
$\int e^{k x} d x=\frac{e^{k x}}{k}+C$	$\frac{d}{d x} \frac{e^{k x}}{k}=e^{k x}$
$\int \sin k x d x=-\frac{\cos k x}{k}+C$	$\frac{d}{d x}\left(-\frac{\cos k x}{k}\right)=\sin k x$
$\int \cos k x d x=\frac{\sin k x}{k}+C$	$\frac{d}{d x}\left(\frac{\sin k x}{k}\right)=\cos k x$
$\int \sec ^{2} x d x=\tan x+C$	$\frac{d}{d x}(-\cot x)=\sec ^{2} x$
$\int \csc ^{2} x d x=-\cot x+C$	$\frac{d}{d x} \sec x=\sec x \tan x$
$\int \sec x \tan x d x=\sec x+C$	$\frac{d}{d x}(-\csc x)=\csc x \cot x$
$\int \csc x \cot x d x=-\csc x+C$	

Remember $\int x^{n} d x=\frac{x^{n+1}}{n+1}+C$

$$
f \quad F
$$

Example: $\int x^{2} d x=\frac{x^{3}}{3}+C$
Recall also the power for derivatives could be used even if the base was a function by using the chain rule
$\frac{d}{d x} \frac{(2 x+1)^{5}}{5}=\frac{5(2 x+1)^{4} \cdot 2}{5}$
$\frac{d}{d x} \frac{(u)^{n+1}}{n+1}=\frac{u^{n} \cdot d u}{d x}$
The inverse of the power rule and chain rule together is the power rule for integrals.
$\int u^{n} d u=\frac{u^{n+1}}{n+1}+C \quad n \neq-1 \quad$ if $n=-1 \quad$ then $u^{n}=\frac{1}{u} \Rightarrow \int \frac{1}{u} d u=\ln u+C$
This formula is very helpful, but often hard to recognize.

Example: $\int\left(x^{3}-2\right)^{4} 3 x^{2} d x$ To find this we need an antiderivative of the integrand. The integrand is a product. This is difficult to integrate. However, if we integrate using a " u " substitution this becomes easy.
$\int\left(x^{3}-2\right)^{4} 3 x^{2} d x$
Let $u=x^{3}-2$ and $d u=3 x^{2} d x \Rightarrow \int u^{4} d u \Rightarrow \frac{u^{5}}{5} \Rightarrow \frac{\left(x^{3}-2\right)^{5}}{5}+C$
Check the answer by finding the derivative.

Do these problems:
$\int(x+2)^{3} d x$
$\int \sqrt{4 x-1} d x$

We do a "u" substitution when a function and its derivative (or a constant multiple of the derivative) make up the integral.
\#20

$$
\int 28(7 x-2)^{3} d x
$$

\#17

$$
\int \sin 3 x d x
$$

From \#17 we can see that some trig functions aren't too bad to integrate.
Example: $\int \sec ^{2} x d x$

Example 4

Example 5

What about $\int \tan x d x$
Since $\tan (x)$ isn't in our integral table and it's not the derivative of any function we know, we'll have to do something different. Remember that all functions can be written in terms of sines and cosines. Try changing tangent to \sin / \cos
$\int \tan x d x=\int \frac{\sin x}{\cos x} d x$
What do you notice? Answer: sin and cos are derivatives of one another
So we should do a " u " substitution. But, which one is u ?
$u=\sin x$
or
$u=\cos x$
$d u=\cos x d x$
doesn't work
$d u=-\sin x d x$
$\int \frac{-1}{u} d u$
$\int \frac{-1}{u} d u=-\ln u+C=-\ln |\cos x|+C$
or $\ln \left|\frac{1}{\cos x}\right|+C \quad$ or $\quad \ln |\sec x|+C$
Substitution in Indefinite Integrals

$\int f(g(x)) \cdot g^{\prime}(x) d x=\int f(u) d u$	Substitute $\mathrm{u}=\mathrm{g}(\mathrm{x}), \mathrm{du}=\mathrm{g}^{\prime}(\mathrm{x}) \mathrm{dx}$
$=\mathrm{F}(\mathrm{u})+\mathrm{C}$	Evaluate by finding an antiderivative $\mathrm{F}(\mathrm{u})$ of $\mathrm{f}(\mathrm{u})$
$=\mathrm{F}(\mathrm{g}(\mathrm{x}))+\mathrm{C}$	Replace u by $\mathrm{g}(\mathrm{x})$

Example 7:

Substitution in Definite Integrals

Substitute $\mathrm{u}=\mathrm{g}(\mathrm{x}), \mathrm{du}=\mathrm{g}^{\prime}(\mathrm{x}) \mathrm{dx}$ and integrate with respect to u from $\mathrm{u}=\mathrm{g}$ (a) to $\mathrm{u}=\mathrm{g}(\mathrm{b})$
$\int_{a}^{b} f(g(x)) \cdot g^{\prime}(x) d x=\int_{g(a)}^{g(b)} f(u) d u$
Example $8 \quad \int_{0}^{\frac{\pi}{4}} \tan x \sec ^{2} x d x \quad$ What makes this problem different?
Continue on as normal with $u=\tan x$ and $d u=\sec ^{2} x d x$
$\int_{0}^{\frac{\pi}{4}} u d u=\left[\frac{u^{2}}{2}\right]_{0}^{\frac{\pi}{4}}=\frac{\left(\tan \frac{\pi}{4}\right)^{2}}{2}-\frac{(\tan 0)^{2}}{2}=\frac{1}{2}-0=\frac{1}{2}$

Or change the limits of integration by evaluating u at the limits.
$\int_{\tan 0}^{\tan \frac{\pi}{4}} u d u=\int_{0}^{1} u d u=\left[\frac{u^{2}}{2}\right]_{0}^{1}=\frac{1}{2}-0=\frac{1}{2}$
It's the same either way. You just have to decide if evaluating " u " at the limits saves effort. Usually it does.

Example 9

