Applications of Vectors

Example: Forces of 2 lb and 12 lb are acting at an angle of 72° to each other. Find the magnitude of the resultant force and the angle between the resultant and each force.

Example: The resultant of a 13-lb force and another force has a magnitude of 9 lb at an angle of 20° with the $13-\mathrm{lb}$ force. Find the magnitude of the other force and the angle between the two forces.

Inclined Plane Problems: The weight of an object is always modeled as a vertical vector and the force required to move the object is modeled as a vector parallel to the inclined plane. Its length increases as the incline increases. The resultant of these two forces is a vector perpendicular to the inclined plane. It is what a bathroom scale would read if trapped between the object and the plane.

Example: Find the amount of force required to push an 800-pound block of ice up a ramp that is inclined 10°.

Example: A landscaper uses 100 pounds of force to pull a cart full of rocks up a driveway that is inclined 15°. What is the weight of the cart?

Example: If 300 pounds of force is required to push a 1000-pound safe up a ramp, then what is the angle of inclination of the ramp?

Navigation Problems: Wind affects the speed and direction of a plane. The heading and air speed are the direction and speed of the plane before wind is taken into account. The course and ground speed are the direction and speed of the plane with wind taken into account. The angle between the heading and the course is the drift angle.

Example: An airplane is headed due east with an air speed of 200 mph . The wind is out of the south (bearing 0°) at 40 mph . Find the ground speed, the drift angle, and the course of the airplane.

Example: An airplane is headed due west with an air speed of 400 mph . The wind is out of the southwest (bearing 45°) at 90 mph . Find the ground speed, the drift angle, and the course of the airplane.

Example: A boat is traveling at 20 mph with a bearing of $\mathrm{N} 20^{\circ} \mathrm{W}$. The current is moving at 4 mph with a bearing of $\mathrm{S} 40^{\circ} \mathrm{W}$. Find the boat's true speed, drift angle, and course.

