Vectors

Scalar Quantities: Quantities such as length, area, volume, temperature, and time, which have magnitude (size), but no direction.

Vector Quantities: Quantities that involve both a magnitude and direction, such as velocity, acceleration, and force. These quantities can be represented by directed line segments called vectors.

The length of a vector represents the magnitude of the vector quantity. The direction is indicated by the position of the vector and the arrowhead at one end.

Notation: $\overrightarrow{A B}$ is used to name a vector with initial point A and terminal point B. Vectors may also be denoted by bold letters. $\overrightarrow{A B}$ can also be written as $\mathbf{A B}$. If the initial and terminal points are not specified, vectors can be named by a single uppercase or lowercase letter (eg. $\vec{b}, \vec{B}, \mathbf{b}$, or \mathbf{B}). The magnitude of vector \mathbf{A} is written $|\mathbf{A}|$.

Equal Vectors: Vectors with the same magnitude and direction. They do not have to be in the same place.
Zero Vector: A vector with no magnitude and no direction. It is denoted by $\mathbf{0}$.
Scalar Multiplication: For any scalar k and vector $\mathbf{A}, k \mathbf{A}$ is a vector with magnitude $|k|$ times the magnitude of \mathbf{A}. If $k>0$, then the direction of $k \mathbf{A}$ is the same as the direction of \mathbf{A}. If $k<0$, the direction of $k \mathbf{A}$ is opposite to the direction of \mathbf{A}. If $k=0$, then $k \mathbf{A}=\mathbf{0}$.

Suppose two draft horses are pulling on a tree stump with forces of 200 pounds and 300 pounds, with an angle of 65° between the forces. If \mathbf{A} and \mathbf{B} had the same direction, then there would be a total force of 500 pounds acting on the stump, but the total force is less because of the angle between the forces. By the parallelogram law, the force acting along the diagonal of the parallelogram,
 with a magnitude equal to the length of the diagonal, has the same effect on the stump as the two forces \mathbf{A} and B. The force $\mathbf{A}+\mathbf{B}$ acting along the diagonal is called the sum or resultant of \mathbf{A} and \mathbf{B}.

Vector Addition: To find the resultant or sum $\mathbf{A}+\mathbf{B}$ of any vectors \mathbf{A} and \mathbf{B}, draw \mathbf{B} so that the initial point of \mathbf{B} is at the terminal point of \mathbf{A}. The vector that begins at the initial point of \mathbf{A} and ends at the terminal point of \mathbf{B} is the vector $\mathbf{A}+\mathbf{B}$. For every vector \mathbf{B}, there is a vector $-\mathbf{B}$, with the same magnitude as \mathbf{B}, but the opposite direction. $\mathbf{A}-\mathbf{B}=\mathbf{A}+(-\mathbf{B})$.

Example: Sketch the vectors A + B and A-B.

Any nonzero vector \mathbf{v} is the sum of a horizontal component, $\mathbf{v}_{\mathbf{x}}$, and a vertical component, \mathbf{v}. If a vector \mathbf{v} is placed in a rectangular coordinate system so that its initial point is the origin, then \mathbf{v} is called a position vector. The angle θ formed by the positive x-axis and a position vector is the direction angle for the position vector.

Component Form: The notation $\langle x, y\rangle$ is used to define a position vector with terminal point (x, y). This is called component form
 because the horizontal component is $\mathbf{v}_{\mathbf{x}}=\langle x, 0\rangle$ and its vertical component is $\mathbf{v}_{\mathbf{y}}=\langle 0, y\rangle$.

The magnitude of the vector $\mathbf{v}=\langle x, y\rangle$ is $|\mathbf{v}|=r=\sqrt{x^{2}+y^{2}}$. To find the direction angle, use $\sin \theta=\frac{y}{r}, \cos \theta=\frac{x}{r}$, and $\tan \theta=\frac{y}{x}$.

If a vector has magnitude r and direction angle θ, its component form is $\langle r \cos \theta, r \sin \theta\rangle$.
Examples: Find the component form for each vector \mathbf{v} with the given magnitude and direction angle θ. Round to the nearest tenth if necessary.
a) $|\mathbf{v}|=12, \theta=45^{\circ}$
b) $|\mathbf{v}|=50, \theta=120^{\circ}$
c) $|\mathbf{v}|=445, \theta=211.1^{\circ}$

Examples: Find the magnitude and direction angle of each vector.
a) $\mathbf{v}=\langle 1,-1\rangle$
b) $\mathbf{v}=\langle-2,2 \sqrt{3}\rangle$
c) $\mathbf{v}=\langle-4,-5\rangle$

$$
\begin{array}{lll}
& \text { If } \mathbf{A}=\left\langle a_{1}, a_{2}\right\rangle, \mathbf{B}=\left\langle b_{1}, b_{2}\right\rangle, & \text { and } k \text { is a scalar, then } \\
\text { 1. } k \mathbf{A}=\left\langle k a_{1}, k a_{2}\right\rangle & \text { Scalar Product } \\
\text { Vector Arithmetic: } & \text { 2. } \mathbf{A}+\mathbf{B}=\left\langle a_{1}+b_{1}, a_{2}+b_{2}\right\rangle & \text { Vector Sum } \\
\text { 3. } \mathbf{A}-\mathbf{B}=\left\langle a_{1}-b_{1}, a_{2}-b_{2}\right\rangle & \text { Vector Difference } \\
\text { 4. } \mathbf{A} \cdot \mathbf{B}=a_{1} b_{1}+a_{2} b_{2} & \text { Dot Product }
\end{array}
$$

Examples: Let $\mathbf{w}=\langle-1,-3\rangle$ and $\mathbf{v}=\langle-3,4\rangle$. Perform the operations indicated.
a) $\mathbf{w}-\mathbf{v}$
b) $-8 \mathbf{v}$
c) $3 \mathbf{w}+4 \mathbf{v}$
d) $\mathbf{w} \cdot \mathbf{v}$

The Angle Between Two Vectors:

If \mathbf{A} and \mathbf{B} are nonzero vectors and α is the smallest positive angle between them, then $\alpha=\cos ^{-1}\left(\frac{\mathbf{A} \cdot \mathbf{B}}{|\mathbf{A}||\mathbf{B}|}\right)$.

Examples: Find the smallest positive angle between the following vectors:
a) $\langle 1,3\rangle$ and $\langle 5,2\rangle$
b) $\langle-5,1\rangle$ and $\langle 7,3\rangle$

Parallel Vectors: The vectors \mathbf{A} and \mathbf{B} are parallel if and only if $\mathbf{A}=k \mathbf{B}$ for a nonzero scalar k. Perpendicular Vectors: The vectors \mathbf{A} and \mathbf{B} are perpendicular if and only if $\mathbf{A} \cdot \mathbf{B}=0$.

Examples: Determine whether each pair of vectors is parallel, perpendicular, or neither.
a) $\langle-2,3\rangle$ and $\langle 6,4\rangle$
b) $\langle 2,-5\rangle$ and $\langle-4,10\rangle$
c) $\langle 2,6\rangle$ and $\langle 6,2\rangle$

The vectors $\mathbf{i}=\langle 1,0\rangle$ and $\mathbf{j}=\langle 0,1\rangle$ are called unit vectors because each has magnitude one. For any vector $\left\langle a_{1}, a_{2}\right\rangle$, we have $\left\langle a_{1}, a_{2}\right\rangle=a_{1}\langle 1,0\rangle+a_{2}\langle 0,1\rangle=a_{1} \mathbf{i}+a_{2} \mathbf{j}$. The form $a_{1} \mathbf{i}+a_{2} \mathbf{j}$ is called a linear combination of the vectors \mathbf{i} and \mathbf{j}.

Examples: Write each vector as a linear combination of the unit vectors \mathbf{i} and \mathbf{j}.
a) $\mathbf{A}=\langle 2,3\rangle$
b) $\mathbf{B}=\langle-1,7\rangle$
c) $\mathbf{C}=\langle 0,-9\rangle$

