The Law of Cosines

The Law of Cosines: In any triangle, $a^{2}=b^{2}+c^{2}-2 b c \cos \alpha$

$$
\begin{aligned}
& b^{2}=a^{2}+c^{2}-2 a c \cos \beta \\
& c^{2}=a^{2}+b^{2}-2 a b \cos \gamma
\end{aligned}
$$

SSS: Use the fact that the largest angle is across from the longest side of the triangle to solve for the largest angle using the law of cosines. (For example, if c is the longest side, use the equation $c^{2}=a^{2}+b^{2}-2 a b \cos \gamma$ to solve for γ.) Then use the law of sines to find the remaining angles, which will both be acute. Don't use the law of sines to solve for any angle that might be obtuse! The law of sines will always give you acute angle measures!

Example: $a=3.8, b=9.6, c=7.7$

SAS: Find the length of the third side using the law of cosines. Use the law of sines to find the angle across from the shorter of the two given sides. Find the remaining angle by subtracting the first two from 180°.

Example: $b=5.8, c=3.6, \alpha=39.5^{\circ}$

Example: Jan and Dean started hiking from the same location at the same time. Jan hiked at 4 mph with bearing $\mathrm{N} 12^{\circ} \mathrm{E}$, and Dean hiked at 5 mph with bearing $\mathrm{N} 31^{\circ} \mathrm{W}$. How far apart were they after 6 hours? Round to the nearest tenth of a mile.

Area of a Triangle

Area of triangle $=$ \qquad

$\sin \alpha=$
$h=$ \qquad

So, by substitution,

$$
A=
$$

\qquad

Examples:

Find the area of the triangle with $\alpha=39.4^{\circ}, b=12.6$, and $c=13.7$

Find the area of a triangle with $\alpha=56.3^{\circ}, \beta=41.2^{\circ}$, and $a=9.8 \mathrm{~cm}$

Heron's Formula

Using the law of cosines, it is possible to derive a formula for the area of a triangle that involves only the lengths of the sides of the triangle. The formula is known as "Heron's Formula" after Heron of Alexandria, who is believed to have discovered it around AD 75.

Heron's Formula: The area of a triangle with sides of lengths a, b, and c is given by:

$$
A=\sqrt{S(S-a)(S-b)(S-c)}, \text { where } S=(a+b+c) / 2
$$

(S is called the semi-perimeter. It is half of the perimeter of the triangle.)

Examples:

Find the area of the triangle with $a=12 \mathrm{in}, b=8 \mathrm{in}$, and $c=6$ in

Find the area of a triangle with $a=346, b=234$, and $c=422$

